4.3 Reaction Stoichiometry

By the end of this section, you will be able to:

- Explain the concept of stoichiometry as it pertains to chemical reactions
- Use balanced chemical equations to derive stoichiometric factors relating amounts of reactants and products
- Perform stoichiometric calculations involving mass, moles, and solution molarity

A balanced chemical equation provides a great deal of information in a very succinct format. Chemical formulas provide the identities of the reactants and products involved in the chemical change, allowing classification of the reaction. Coefficients provide the relative numbers of these chemical species, allowing a quantitative assessment of the relationships between the amounts of substances consumed and produced by the reaction. These quantitative relationships are known as the reaction's **stoichiometry**, a term derived from the Greek words *stoicheion* (meaning "element") and *metron* (meaning "measure"). In this module, the use of balanced chemical equations for various stoichiometric applications is explored.

The general approach to using stoichiometric relationships is similar in concept to the way people go about many common activities. Food preparation, for example, offers an appropriate comparison. A recipe for making eight pancakes calls for 1 cup pancake mix, $\frac{3}{4}$ cup milk, and one egg. The "equation" representing the preparation of

pancakes per this recipe is

$$1 \operatorname{cup} \operatorname{mix} + \frac{3}{4} \operatorname{cup} \operatorname{milk} + 1 \operatorname{egg} \longrightarrow 8 \operatorname{pancakes}$$

If two dozen pancakes are needed for a big family breakfast, the ingredient amounts must be increased proportionally according to the amounts given in the recipe. For example, the number of eggs required to make 24 pancakes is

24 pancakes
$$\times \frac{1 \text{ egg}}{8 \text{ pancakes}} = 3 \text{ eggs}$$

Balanced chemical equations are used in much the same fashion to determine the amount of one reactant required to react with a given amount of another reactant, or to yield a given amount of product, and so forth. The coefficients in the balanced equation are used to derive **stoichiometric factors** that permit computation of the desired quantity. To illustrate this idea, consider the production of ammonia by reaction of hydrogen and nitrogen:

$$N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$$

This equation shows ammonia molecules are produced from hydrogen molecules in a 2:3 ratio, and stoichiometric factors may be derived using any amount (number) unit:

$$\frac{2 \text{ NH}_3 \text{ molecules}}{3 \text{ H}_2 \text{ molecules}}$$
 or $\frac{2 \text{ doz NH}_3 \text{ molecules}}{3 \text{ doz H}_2 \text{ molecules}}$ or $\frac{2 \text{ mol NH}_3 \text{ molecules}}{3 \text{ mol H}_2 \text{ molecules}}$

These stoichiometric factors can be used to compute the number of ammonia molecules produced from a given number of hydrogen molecules, or the number of hydrogen molecules required to produce a given number of ammonia molecules. Similar factors may be derived for any pair of substances in any chemical equation.

Example 4.8

Moles of Reactant Required in a Reaction

How many moles of I₂ are required to react with 0.429 mol of Al according to the following equation (see **Figure 4.9**)?

 $2Al + 3I_2 \longrightarrow 2AlI_3$

Figure 4.9 Aluminum and iodine react to produce aluminum iodide. The heat of the reaction vaporizes some of the solid iodine as a purple vapor. (credit: modification of work by Mark Ott)

Solution

Referring to the balanced chemical equation, the stoichiometric factor relating the two substances of interest is $\frac{3 \text{ mol } I_2}{2 \text{ mol } \text{Al}}$. The molar amount of iodine is derived by multiplying the provided molar amount of aluminum by this factor:

Check Your Learning

How many moles of Ca(OH)₂ are required to react with 1.36 mol of H₃PO₄ to produce Ca₃(PO₄)₂ according to the equation $3Ca(OH)_2 + 2H_3PO_4 \longrightarrow Ca_3(PO_4)_2 + 6H_2O$?

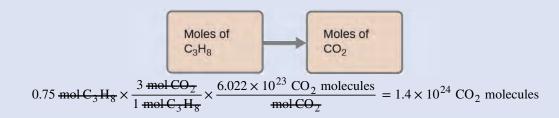
Answer: 2.04 mol

Example 4.9

Number of Product Molecules Generated by a Reaction

How many carbon dioxide molecules are produced when 0.75 mol of propane is combusted according to this equation?

$$C_3H_8 + 5O_2 \longrightarrow 3CO_2 + 4H_2O$$


Solution

The approach here is the same as for **Example 4.8**, though the absolute number of molecules is requested, not the number of moles of molecules. This will simply require use of the moles-to-numbers conversion factor, Avogadro's number.

The balanced equation shows that carbon dioxide is produced from propane in a 3:1 ratio:

 $\frac{3 \text{ mol } \text{CO}_2}{1 \text{ mol } \text{C}_3 \text{H}_8}$

Using this stoichiometric factor, the provided molar amount of propane, and Avogadro's number,

Check Your Learning

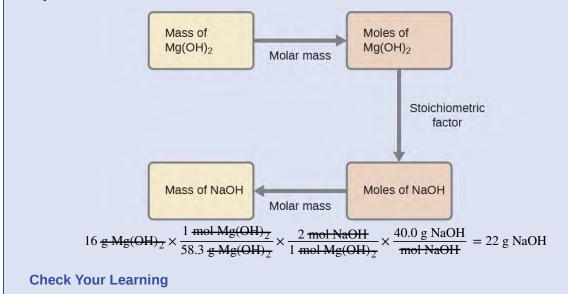
How many NH₃ molecules are produced by the reaction of 4.0 mol of Ca(OH)₂ according to the following equation:

$$(NH_4)_2 SO_4 + Ca(OH)_2 \longrightarrow 2NH_3 + CaSO_4 + 2H_2O$$

Answer: 4.8×10^{24} NH₃ molecules

These examples illustrate the ease with which the amounts of substances involved in a chemical reaction of known stoichiometry may be related. Directly measuring numbers of atoms and molecules is, however, not an easy task, and the practical application of stoichiometry requires that we use the more readily measured property of mass.

Example 4.10


Relating Masses of Reactants and Products

What mass of sodium hydroxide, NaOH, would be required to produce 16 g of the antacid milk of magnesia [magnesium hydroxide, Mg(OH)₂] by the following reaction?

$$MgCl_2(aq) + 2NaOH(aq) \longrightarrow Mg(OH)_2(s) + 2NaCl(aq)$$

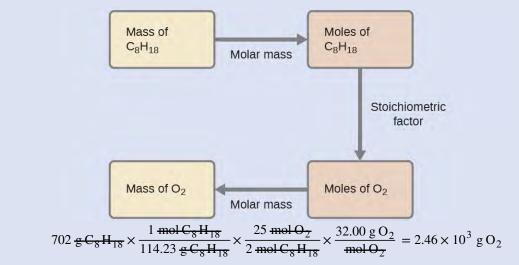
Solution

The approach used previously in **Example 4.8** and **Example 4.9** is likewise used here; that is, we must derive an appropriate stoichiometric factor from the balanced chemical equation and use it to relate the amounts of the two substances of interest. In this case, however, masses (not molar amounts) are provided and requested, so additional steps of the sort learned in the previous chapter are required. The calculations required are outlined in this flowchart:

What mass of gallium oxide, Ga₂O₃, can be prepared from 29.0 g of gallium metal? The equation for the reaction is $4Ga + 3O_2 \longrightarrow 2Ga_2O_3$.

Answer: 39.0 g

Example 4.11

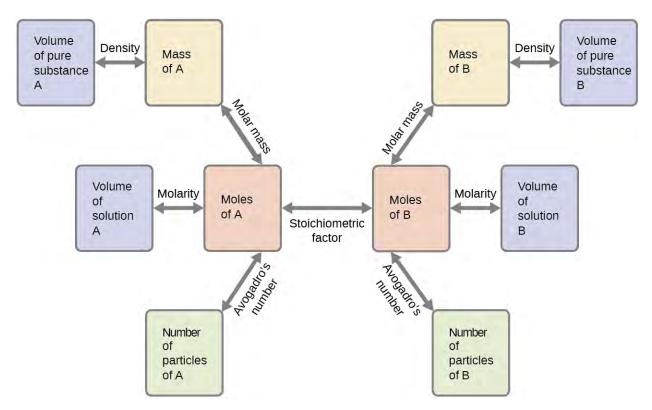

Relating Masses of Reactants

What mass of oxygen gas, O₂, from the air is consumed in the combustion of 702 g of octane, C₈H₁₈, one of the principal components of gasoline?

$$2C_8H_{18} + 25O_2 \longrightarrow 16CO_2 + 18H_2O_2$$

Solution

The approach required here is the same as for the **Example 4.10**, differing only in that the provided and requested masses are both for reactant species.



Check Your Learning

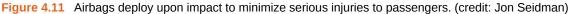
What mass of CO is required to react with 25.13 g of Fe₂O₃ according to the equation $Fe_2O_3 + 3CO \longrightarrow 2Fe + 3CO_2$?

Answer: 13.22 g

These examples illustrate just a few instances of reaction stoichiometry calculations. Numerous variations on the beginning and ending computational steps are possible depending upon what particular quantities are provided and sought (volumes, solution concentrations, and so forth). Regardless of the details, all these calculations share a common essential component: the use of stoichiometric factors derived from balanced chemical equations. **Figure 4.10** provides a general outline of the various computational steps associated with many reaction stoichiometry calculations.

Figure 4.10 The flowchart depicts the various computational steps involved in most reaction stoichiometry calculations.

Chemistry in Everyday Life


Airbags

Airbags (Figure 4.11) are a safety feature provided in most automobiles since the 1990s. The effective operation of an airbag requires that it be rapidly inflated with an appropriate amount (volume) of gas when the vehicle is involved in a collision. This requirement is satisfied in many automotive airbag systems through use of explosive chemical reactions, one common choice being the decomposition of sodium azide, NaN₃. When sensors in the vehicle detect a collision, an electrical current is passed through a carefully measured amount of NaN₃ to initiate its decomposition:

$$2\operatorname{NaN}_3(s) \longrightarrow 3\operatorname{N}_2(g) + 2\operatorname{Na}(s)$$

This reaction is very rapid, generating gaseous nitrogen that can deploy and fully inflate a typical airbag in a fraction of a second (~0.03–0.1 s). Among many engineering considerations, the amount of sodium azide used must be appropriate for generating enough nitrogen gas to fully inflate the air bag and ensure its proper function. For example, a small mass (~100 g) of NaN₃ will generate approximately 50 L of N₂.

4.3 Reaction Stoichiometry

42. Write the balanced equation, then outline the steps necessary to determine the information requested in each of the following:

(a) The number of moles and the mass of chlorine, Cl₂, required to react with 10.0 g of sodium metal, Na, to produce sodium chloride, NaCl.

(b) The number of moles and the mass of oxygen formed by the decomposition of 1.252 g of mercury(II) oxide.

(c) The number of moles and the mass of sodium nitrate, NaNO₃, required to produce 128 g of oxygen. (NaNO₂ is the other product.)

(d) The number of moles and the mass of carbon dioxide formed by the combustion of 20.0 kg of carbon in an excess of oxygen.

(e) The number of moles and the mass of copper(II) carbonate needed to produce 1.500 kg of copper(II) oxide. (CO₂ is the other product.)

(f)

The number of moles and the mass of
$$Br - C - C - Br$$
 formed by the reaction of 12.85 g of $H - C - C - C - Br$ formed by the reaction of 12.85 g of $H - C - C - C - Br$

with an excess of Br₂.

43. Determine the number of moles and the mass requested for each reaction in **Exercise 4.42**.

44. Write the balanced equation, then outline the steps necessary to determine the information requested in each of the following:

(a) The number of moles and the mass of Mg required to react with 5.00 g of HCl and produce MgCl₂ and H₂.

(b) The number of moles and the mass of oxygen formed by the decomposition of 1.252 g of silver(I) oxide.

(c) The number of moles and the mass of magnesium carbonate, MgCO₃, required to produce 283 g of carbon dioxide. (MgO is the other product.)

(d) The number of moles and the mass of water formed by the combustion of 20.0 kg of acetylene, C₂H₂, in an excess of oxygen.

(e) The number of moles and the mass of barium peroxide, BaO₂, needed to produce 2.500 kg of barium oxide, BaO (O₂ is the other product.)

(f)

The number of moles and the mass of
$$C = C$$
 required to react with H₂O to produce 9.55 g of H $-C = C - O - H$.
H H

45. Determine the number of moles and the mass requested for each reaction in **Exercise 4.44**.

46. H₂ is produced by the reaction of 118.5 mL of a 0.8775-M solution of H₃PO₄ according to the following equation: $2Cr + 2H_3PO_4 \longrightarrow 3H_2 + 2CrPO_4$.

(a) Outline the steps necessary to determine the number of moles and mass of H₂.

(b) Perform the calculations outlined.

47. Gallium chloride is formed by the reaction of 2.6 L of a 1.44 M solution of HCl according to the following equation: $2Ga + 6HCl \rightarrow 2GaCl_3 + 3H_2$.

(a) Outline the steps necessary to determine the number of moles and mass of gallium chloride.

(b) Perform the calculations outlined.

48. I₂ is produced by the reaction of 0.4235 mol of CuCl₂ according to the following equation: $2\text{CuCl}_2 + 4\text{KI} \longrightarrow 2\text{CuI} + 4\text{KCl} + \text{I}_2$.

(a) How many molecules of I₂ are produced?

(b) What mass of I2 is produced?

49. Silver is often extracted from ores as K[Ag(CN)₂] and then recovered by the reaction $2K[Ag(CN)_2](aq) + Zn(s) \longrightarrow 2Ag(s) + Zn(CN)_2(aq) + 2KCN(aq)$

(a) How many molecules of Zn(CN)₂ are produced by the reaction of 35.27 g of K[Ag(CN)₂]?

(b) What mass of Zn(CN)₂ is produced?

50. What mass of silver oxide, Ag₂O, is required to produce 25.0 g of silver sulfadiazine, AgC₁₀H₉N₄SO₂, from the reaction of silver oxide and sulfadiazine?

 $2C_{10}H_{10}N_4SO_2 + Ag_2O \longrightarrow 2AgC_{10}H_9N_4SO_2 + H_2O$

51. Carborundum is silicon carbide, SiC, a very hard material used as an abrasive on sandpaper and in other applications. It is prepared by the reaction of pure sand, SiO₂, with carbon at high temperature. Carbon monoxide, CO, is the other product of this reaction. Write the balanced equation for the reaction, and calculate how much SiO₂ is required to produce 3.00 kg of SiC.

52. Automotive air bags inflate when a sample of sodium azide, NaN₃, is very rapidly decomposed. $2\text{NaN}_3(s) \longrightarrow 2\text{Na}(s) + 3\text{N}_2(g)$

What mass of sodium azide is required to produce 2.6 ft³ (73.6 L) of nitrogen gas with a density of 1.25 g/L? **53.** Urea, CO(NH₂)₂, is manufactured on a large scale for use in producing urea-formaldehyde plastics and as a fertilizer. What is the maximum mass of urea that can be manufactured from the CO₂ produced by combustion of

 1.00×10^3 kg of carbon followed by the reaction?

 $\operatorname{CO}_2(g) + 2\operatorname{NH}_3(g) \longrightarrow \operatorname{CO}(\operatorname{NH}_2)_2(s) + \operatorname{H}_2\operatorname{O}(l)$

54. In an accident, a solution containing 2.5 kg of nitric acid was spilled. Two kilograms of Na₂CO₃ was quickly spread on the area and CO₂ was released by the reaction. Was sufficient Na₂CO₃ used to neutralize all of the acid?

55. A compact car gets 37.5 miles per gallon on the highway. If gasoline contains 84.2% carbon by mass and has a density of 0.8205 g/mL, determine the mass of carbon dioxide produced during a 500-mile trip (3.785 liters per gallon).

56. What volume of a 0.750 M solution of hydrochloric acid, a solution of HCl, can be prepared from the HCl produced by the reaction of 25.0 g of NaCl with an excess of sulfuric acid? NaCl(s) + H₂SO₄(l) \longrightarrow HCl(g) + NaHSO₄(s)

57. What volume of a 0.2089 *M* KI solution contains enough KI to react exactly with the Cu(NO₃)₂ in 43.88 mL of a 0.3842 *M* solution of Cu(NO₃)₂?

 $2Cu(NO_3)_2 + 4KI \longrightarrow 2CuI + I_2 + 4KNO_3$

58. A mordant is a substance that combines with a dye to produce a stable fixed color in a dyed fabric. Calcium acetate is used as a mordant. It is prepared by the reaction of acetic acid with calcium hydroxide. $2CH_3CO_2H + Ca(OH)_2 \longrightarrow Ca(CH_3CO_2)_2 + 2H_2O$

What mass of Ca(OH)₂ is required to react with the acetic acid in 25.0 mL of a solution having a density of 1.065 g/ mL and containing 58.0% acetic acid by mass?

59. The toxic pigment called white lead, Pb₃(OH)₂(CO₃)₂, has been replaced in white paints by rutile, TiO₂. How much rutile (g) can be prepared from 379 g of an ore that contains 88.3% ilmenite (FeTiO₃) by mass? $2FeTiO_3 + 4HCl + Cl_2 \rightarrow 2FeCl_3 + 2TiO_2 + 2H_2 O$