
Chapter 6

Electronic Structure and Periodic
Properties of Elements

Figure 6.1 The Crab Nebula consists of remnants of a supernova (the explosion of a star). NASA’s Hubble Space
Telescope produced this composite image. Measurements of the emitted light wavelengths enabled astronomers to

identify the elements in the nebula, determining that it contains specific ions including S+ (green filaments) and O2+

(red filaments). (credit: modification of work by NASA and ESA)
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Introduction
In 1054, Chinese astronomers recorded the appearance of a “guest star” in the sky, visible even during the day, which
then disappeared slowly over the next two years. The sudden appearance was due to a supernova explosion, which
was much brighter than the original star. Even though this supernova was observed almost a millennium ago, the
remaining Crab Nebula (Figure 6.1) continues to release energy today. It emits not only visible light but also infrared
light, X-rays, and other forms of electromagnetic radiation. The nebula emits both continuous spectra (the blue-white
glow) and atomic emission spectra (the colored filaments). In this chapter, we will discuss light and other forms of
electromagnetic radiation and how they are related to the electronic structure of atoms. We will also see how this
radiation can be used to identify elements, even from thousands of light years away.
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6.1 Electromagnetic Energy

By the end of this section, you will be able to:

• Explain the basic behavior of waves, including travelling waves and standing waves

• Describe the wave nature of light

• Use appropriate equations to calculate related light-wave properties such as period, frequency,

wavelength, and energy

• Distinguish between line and continuous emission spectra

• Describe the particle nature of light

The nature of light has been a subject of inquiry since antiquity. In the seventeenth century, Isaac Newton performed
experiments with lenses and prisms and was able to demonstrate that white light consists of the individual colors
of the rainbow combined together. Newton explained his optics findings in terms of a "corpuscular" view of light,
in which light was composed of streams of extremely tiny particles travelling at high speeds according to Newton's
laws of motion. Others in the seventeenth century, such as Christiaan Huygens, had shown that optical phenomena
such as reflection and refraction could be equally well explained in terms of light as waves travelling at high speed
through a medium called "luminiferous aether" that was thought to permeate all space. Early in the nineteenth
century, Thomas Young demonstrated that light passing through narrow, closely spaced slits produced interference
patterns that could not be explained in terms of Newtonian particles but could be easily explained in terms of waves.
Later in the nineteenth century, after James Clerk Maxwell developed his theory of electromagnetic radiation and
showed that light was the visible part of a vast spectrum of electromagnetic waves, the particle view of light became
thoroughly discredited. By the end of the nineteenth century, scientists viewed the physical universe as roughly
comprising two separate domains: matter composed of particles moving according to Newton's laws of motion, and
electromagnetic radiation consisting of waves governed by Maxwell's equations. Today, these domains are referred
to as classical mechanics and classical electrodynamics (or classical electromagnetism). Although there were a few
physical phenomena that could not be explained within this framework, scientists at that time were so confident of the
overall soundness of this framework that they viewed these aberrations as puzzling paradoxes that would ultimately
be resolved somehow within this framework. As we shall see, these paradoxes led to a contemporary framework that
intimately connects particles and waves at a fundamental level called wave-particle duality, which has superseded the
classical view.

Visible light and other forms of electromagnetic radiation play important roles in chemistry, since they can be used to
infer the energies of electrons within atoms and molecules. Much of modern technology is based on electromagnetic
radiation. For example, radio waves from a mobile phone, X-rays used by dentists, the energy used to cook food
in your microwave, the radiant heat from red-hot objects, and the light from your television screen are forms of
electromagnetic radiation that all exhibit wavelike behavior.

Waves

A wave is an oscillation or periodic movement that can transport energy from one point in space to another. Common
examples of waves are all around us. Shaking the end of a rope transfers energy from your hand to the other end of
the rope, dropping a pebble into a pond causes waves to ripple outward along the water's surface, and the expansion
of air that accompanies a lightning strike generates sound waves (thunder) that can travel outward for several miles.
In each of these cases, kinetic energy is transferred through matter (the rope, water, or air) while the matter remains
essentially in place. An insightful example of a wave occurs in sports stadiums when fans in a narrow region of seats
rise simultaneously and stand with their arms raised up for a few seconds before sitting down again while the fans
in neighboring sections likewise stand up and sit down in sequence. While this wave can quickly encircle a large
stadium in a few seconds, none of the fans actually travel with the wave-they all stay in or above their seats.
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Waves need not be restricted to travel through matter. As Maxwell showed, electromagnetic waves consist of an
electric field oscillating in step with a perpendicular magnetic field, both of which are perpendicular to the direction of

travel. These waves can travel through a vacuum at a constant speed of 2.998 × 108 m/s, the speed of light (denoted

by c).

All waves, including forms of electromagnetic radiation, are characterized by, a wavelength (denoted by λ, the
lowercase Greek letter lambda), a frequency (denoted by ν, the lowercase Greek letter nu), and an amplitude. As can
be seen in Figure 6.2, the wavelength is the distance between two consecutive peaks or troughs in a wave (measured
in meters in the SI system). Electromagnetic waves have wavelengths that fall within an enormous range-wavelengths

of kilometers (103 m) to picometers (10−12 m) have been observed. The frequency is the number of wave cycles that
pass a specified point in space in a specified amount of time (in the SI system, this is measured in seconds). A cycle

corresponds to one complete wavelength. The unit for frequency, expressed as cycles per second [s−1], is the hertz

(Hz). Common multiples of this unit are megahertz, (1 MHz = 1 × 106 Hz) and gigahertz (1 GHz = 1 × 109 Hz).

The amplitude corresponds to the magnitude of the wave's displacement and so, in Figure 6.2, this corresponds to
one-half the height between the peaks and troughs. The amplitude is related to the intensity of the wave, which for
light is the brightness, and for sound is the loudness.

Figure 6.2 One-dimensional sinusoidal waves show the relationship among wavelength, frequency, and speed. The
wave with the shortest wavelength has the highest frequency. Amplitude is one-half the height of the wave from peak
to trough.

The product of a wave's wavelength (λ) and its frequency (ν), λν, is the speed of the wave. Thus, for electromagnetic
radiation in a vacuum:

c = 2.998 × 108 ms−1 = λν

Wavelength and frequency are inversely proportional: As the wavelength increases, the frequency decreases. The
inverse proportionality is illustrated in Figure 6.3. This figure also shows the electromagnetic spectrum, the
range of all types of electromagnetic radiation. Each of the various colors of visible light has specific frequencies
and wavelengths associated with them, and you can see that visible light makes up only a small portion of the
electromagnetic spectrum. Because the technologies developed to work in various parts of the electromagnetic
spectrum are different, for reasons of convenience and historical legacies, different units are typically used for
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different parts of the spectrum. For example, radio waves are usually specified as frequencies (typically in units of
MHz), while the visible region is usually specified in wavelengths (typically in units of nm or angstroms).

Figure 6.3 Portions of the electromagnetic spectrum are shown in order of decreasing frequency and increasing
wavelength. Examples of some applications for various wavelengths include positron emission tomography (PET)
scans, X-ray imaging, remote controls, wireless Internet, cellular telephones, and radios. (credit “Cosmic ray":
modification of work by NASA; credit “PET scan": modification of work by the National Institute of Health; credit “X-
ray": modification of work by Dr. Jochen Lengerke; credit “Dental curing": modification of work by the Department of
the Navy; credit “Night vision": modification of work by the Department of the Army; credit “Remote": modification of
work by Emilian Robert Vicol; credit “Cell phone": modification of work by Brett Jordan; credit “Microwave oven":
modification of work by Billy Mabray; credit “Ultrasound": modification of work by Jane Whitney; credit “AM radio":
modification of work by Dave Clausen)

Example 6.1
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Determining the Frequency and Wavelength of Radiation

A sodium streetlight gives off yellow light that has a wavelength of 589 nm (1 nm = 1 × 10−9 m). What is

the frequency of this light?

Solution

We can rearrange the equation c = λν to solve for the frequency:

ν = c
λ

Since c is expressed in meters per second, we must also convert 589 nm to meters.

ν = ⎛
⎝

2.998 × 108 ms−1

589nm
⎞
⎠
⎛
⎝

1 × 109 nm
1m

⎞
⎠ = 5.09 × 1014 s−1

Check Your Learning

One of the frequencies used to transmit and receive cellular telephone signals in the United States is 850
MHz. What is the wavelength in meters of these radio waves?

Answer: 0.353 m = 35.3 cm

Wireless Communication

Figure 6.4 Radio and cell towers are typically used to transmit long-wavelength electromagnetic radiation.
Increasingly, cell towers are designed to blend in with the landscape, as with the Tucson, Arizona, cell tower
(right) disguised as a palm tree. (credit left: modification of work by Sir Mildred Pierce; credit middle:
modification of work by M.O. Stevens)

Many valuable technologies operate in the radio (3 kHz-300 GHz) frequency region of the electromagnetic
spectrum. At the low frequency (low energy, long wavelength) end of this region are AM (amplitude modulation)
radio signals (540-2830 kHz) that can travel long distances. FM (frequency modulation) radio signals are used
at higher frequencies (87.5-108.0 MHz). In AM radio, the information is transmitted by varying the amplitude

Chemistry in Everyday Life
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of the wave (Figure 6.5). In FM radio, by contrast, the amplitude is constant and the instantaneous frequency
varies.

Figure 6.5 This schematic depicts how amplitude modulation (AM) and frequency modulation (FM) can be
used to transmit a radio wave.

Other technologies also operate in the radio-wave portion of the electromagnetic spectrum. For example, 4G
cellular telephone signals are approximately 880 MHz, while Global Positioning System (GPS) signals operate
at 1.228 and 1.575 GHz, local area wireless technology (Wi-Fi) networks operate at 2.4 to 5 GHz, and highway
toll sensors operate at 5.8 GHz. The frequencies associated with these applications are convenient because
such waves tend not to be absorbed much by common building materials.

One particularly characteristic phenomenon of waves results when two or more waves come into contact: They
interfere with each other. Figure 6.6 shows the interference patterns that arise when light passes through narrow
slits closely spaced about a wavelength apart. The fringe patterns produced depend on the wavelength, with the
fringes being more closely spaced for shorter wavelength light passing through a given set of slits. When the light
passes through the two slits, each slit effectively acts as a new source, resulting in two closely spaced waves coming
into contact at the detector (the camera in this case). The dark regions in Figure 6.6 correspond to regions where
the peaks for the wave from one slit happen to coincide with the troughs for the wave from the other slit (destructive
interference), while the brightest regions correspond to the regions where the peaks for the two waves (or their two
troughs) happen to coincide (constructive interference). Likewise, when two stones are tossed close together into a
pond, interference patterns are visible in the interactions between the waves produced by the stones. Such interference
patterns cannot be explained by particles moving according to the laws of classical mechanics.
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Figure 6.6 Interference fringe patterns are shown for light passing through two closely spaced, narrow slits. The
spacing of the fringes depends on the wavelength, with the fringes being more closely spaced for the shorter-
wavelength blue light. (credit: PASCO)

Dorothy Hodgkin

Because the wavelengths of X-rays (10-10,000 picometers [pm]) are comparable to the size of atoms, X-rays
can be used to determine the structure of molecules. When a beam of X-rays is passed through molecules
packed together in a crystal, the X-rays collide with the electrons and scatter. Constructive and destructive
interference of these scattered X-rays creates a specific diffraction pattern. Calculating backward from this
pattern, the positions of each of the atoms in the molecule can be determined very precisely. One of the
pioneers who helped create this technology was Dorothy Crowfoot Hodgkin.

She was born in Cairo, Egypt, in 1910, where her British parents were studying archeology. Even as a young
girl, she was fascinated with minerals and crystals. When she was a student at Oxford University, she began
researching how X-ray crystallography could be used to determine the structure of biomolecules. She invented
new techniques that allowed her and her students to determine the structures of vitamin B12, penicillin, and

many other important molecules. Diabetes, a disease that affects 382 million people worldwide, involves the
hormone insulin. Hodgkin began studying the structure of insulin in 1934, but it required several decades of
advances in the field before she finally reported the structure in 1969. Understanding the structure has led to
better understanding of the disease and treatment options.

Not all waves are travelling waves. Standing waves (also known as stationary waves) remain constrained within
some region of space. As we shall see, standing waves play an important role in our understanding of the electronic
structure of atoms and molecules. The simplest example of a standing wave is a one-dimensional wave associated
with a vibrating string that is held fixed at its two end points. Figure 6.7 shows the four lowest-energy standing
waves (the fundamental wave and the lowest three harmonics) for a vibrating string at a particular amplitude.
Although the string's motion lies mostly within a plane, the wave itself is considered to be one dimensional, since
it lies along the length of the string. The motion of string segments in a direction perpendicular to the string length
generates the waves and so the amplitude of the waves is visible as the maximum displacement of the curves seen
in Figure 6.7. The key observation from the figure is that only those waves having an integer number, n, of half-
wavelengths between the end points can form. A system with fixed end points such as this restricts the number and
type of the possible waveforms. This is an example of quantization, in which only discrete values from a more
general set of continuous values of some property are observed. Another important observation is that the harmonic
waves (those waves displaying more than one-half wavelength) all have one or more points between the two end
points that are not in motion. These special points are nodes. The energies of the standing waves with a given
amplitude in a vibrating string increase with the number of half-wavelengths n. Since the number of nodes is n – 1,
the energy can also be said to depend on the number of nodes, generally increasing as the number of nodes increases.

Portrait of a Chemist
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Figure 6.7 A vibrating string shows some one-dimensional standing waves. Since the two end points of the string
are held fixed, only waves having an integer number of half-wavelengths can form. The points on the string between
the end points that are not moving are called the nodes.

An example of two-dimensional standing waves is shown in Figure 6.8, which shows the vibrational patterns on
a flat surface. Although the vibrational amplitudes cannot be seen like they could in the vibrating string, the nodes
have been made visible by sprinkling the drum surface with a powder that collects on the areas of the surface that
have minimal displacement. For one-dimensional standing waves, the nodes were points on the line, but for two-
dimensional standing waves, the nodes are lines on the surface (for three-dimensional standing waves, the nodes
are two-dimensional surfaces within the three-dimensional volume). Because of the circular symmetry of the drum
surface, its boundary conditions (the drum surface being tightly constrained to the circumference of the drum) result
in two types of nodes: radial nodes that sweep out all angles at constant radii and, thus, are seen as circles about the
center, and angular nodes that sweep out all radii at constant angles and, thus, are seen as lines passing through the
center. The upper left image in Figure 6.8 shows two radial nodes, while the image in the lower right shows the
vibrational pattern associated with three radial nodes and two angular nodes.
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Figure 6.8 Two-dimensional standing waves can be visualized on a vibrating surface. The surface has been
sprinkled with a powder that collects near the nodal lines. There are two types of nodes visible: radial nodes (circles)
and angular nodes (radii).

You can watch the formation of various radial nodes here
(http://openstaxcollege.org/l/16radnodes) as singer Imogen Heap projects her
voice across a kettle drum.

Blackbody Radiation and the Ultraviolet Catastrophe

The last few decades of the nineteenth century witnessed intense research activity in commercializing newly
discovered electric lighting. This required obtaining a better understanding of the distributions of light emitted
from various sources being considered. Artificial lighting is usually designed to mimic natural sunlight within the
limitations of the underlying technology. Such lighting consists of a range of broadly distributed frequencies that form
a continuous spectrum. Figure 6.9 shows the wavelength distribution for sunlight. The most intense radiation is
in the visible region, with the intensity dropping off rapidly for shorter wavelength ultraviolet (UV) light, and more
slowly for longer wavelength infrared (IR) light.

Link to Learning
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Figure 6.9 The spectral distribution (light intensity vs. wavelength) of sunlight reaches the Earth's atmosphere as UV
light, visible light, and IR light. The unabsorbed sunlight at the top of the atmosphere has a distribution that
approximately matches the theoretical distribution of a blackbody at 5250 °C, represented by the blue curve. (credit:
modification of work by American Society for Testing and Materials (ASTM) Terrestrial Reference Spectra for
Photovoltaic Performance Evaluation)

In Figure 6.9, the solar distribution is compared to a representative distribution, called a blackbody spectrum,
that corresponds to a temperature of 5250 °C. The blackbody spectrum matches the solar spectrum quite well. A
blackbody is a convenient, ideal emitter that approximates the behavior of many materials when heated. It is “ideal”
in the same sense that an ideal gas is a convenient, simple representation of real gases that works well, provided
that the pressure is not too high nor the temperature too low. A good approximation of a blackbody that can be used
to observe blackbody radiation is a metal oven that can be heated to very high temperatures. The oven has a small
hole allowing for the light being emitted within the oven to be observed with a spectrometer so that the wavelengths
and their intensities can be measured. Figure 6.10 shows the resulting curves for some representative temperatures.
Each distribution depends only on a single parameter: the temperature. The maxima in the blackbody curves, λmax,

shift to shorter wavelengths as the temperature increases, reflecting the observation that metals being heated to high
temperatures begin to glow a darker red that becomes brighter as the temperature increases, eventually becoming
white hot at very high temperatures as the intensities of all of the visible wavelengths become appreciable. This
common observation was at the heart of the first paradox that showed the fundamental limitations of classical physics
that we will examine.

Physicists derived mathematical expressions for the blackbody curves using well-accepted concepts from the theories
of classical mechanics and classical electromagnetism. The theoretical expressions as functions of temperature fit the
observed experimental blackbody curves well at longer wavelengths, but showed significant discrepancies at shorter
wavelengths. Not only did the theoretical curves not show a peak, they absurdly showed the intensity becoming
infinitely large as the wavelength became smaller, which would imply that everyday objects at room temperature
should be emitting large amounts of UV light. This became known as the “ultraviolet catastrophe” because no one
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could find any problems with the theoretical treatment that could lead to such unrealistic short-wavelength behavior.
Finally, around 1900, Max Planck derived a theoretical expression for blackbody radiation that fit the experimental
observations exactly (within experimental error). Planck developed his theoretical treatment by extending the earlier
work that had been based on the premise that the atoms composing the oven vibrated at increasing frequencies
(or decreasing wavelengths) as the temperature increased, with these vibrations being the source of the emitted
electromagnetic radiation. But where the earlier treatments had allowed the vibrating atoms to have any energy values
obtained from a continuous set of energies (perfectly reasonable, according to classical physics), Planck found that by
restricting the vibrational energies to discrete values for each frequency, he could derive an expression for blackbody
radiation that correctly had the intensity dropping rapidly for the short wavelengths in the UV region.

E = nhν, n = 1, 2, 3, . . .

The quantity h is a constant now known as Planck's constant, in his honor. Although Planck was pleased he had
resolved the blackbody radiation paradox, he was disturbed that to do so, he needed to assume the vibrating atoms
required quantized energies, which he was unable to explain. The value of Planck's constant is very small, 6.626

× 10−34 joule seconds (J s), which helps explain why energy quantization had not been observed previously in

macroscopic phenomena.

Figure 6.10 Blackbody spectral distribution curves are shown for some representative temperatures.

The Photoelectric Effect

The next paradox in the classical theory to be resolved concerned the photoelectric effect (Figure 6.11). It had been
observed that electrons could be ejected from the clean surface of a metal when light having a frequency greater than
some threshold frequency was shone on it. Surprisingly, the kinetic energy of the ejected electrons did not depend
on the brightness of the light, but increased with increasing frequency of the light. Since the electrons in the metal
had a certain amount of binding energy keeping them there, the incident light needed to have more energy to free
the electrons. According to classical wave theory, a wave's energy depends on its intensity (which depends on its
amplitude), not its frequency. One part of these observations was that the number of electrons ejected within in a
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given time period was seen to increase as the brightness increased. In 1905, Albert Einstein was able to resolve the
paradox by incorporating Planck's quantization findings into the discredited particle view of light (Einstein actually
won his Nobel prize for this work, and not for his theories of relativity for which he is most famous).

Einstein argued that the quantized energies that Planck had postulated in his treatment of blackbody radiation could
be applied to the light in the photoelectric effect so that the light striking the metal surface should not be viewed as a
wave, but instead as a stream of particles (later called photons) whose energy depended on their frequency, according

to Planck's formula, E = hν (or, in terms of wavelength using c = νλ, E = hc
λ ). Electrons were ejected when hit

by photons having sufficient energy (a frequency greater than the threshold). The greater the frequency, the greater
the kinetic energy imparted to the escaping electrons by the collisions. Einstein also argued that the light intensity
did not depend on the amplitude of the incoming wave, but instead corresponded to the number of photons striking
the surface within a given time period. This explains why the number of ejected electrons increased with increasing
brightness, since the greater the number of incoming photons, the greater the likelihood that they would collide with
some of the electrons.

With Einstein's findings, the nature of light took on a new air of mystery. Although many light phenomena could be
explained either in terms of waves or particles, certain phenomena, such as the interference patterns obtained when
light passed through a double slit, were completely contrary to a particle view of light, while other phenomena, such
as the photoelectric effect, were completely contrary to a wave view of light. Somehow, at a deep fundamental level
still not fully understood, light is both wavelike and particle-like. This is known as wave-particle duality.

Figure 6.11 Photons with low frequencies do not have enough energy to cause electrons to be ejected via the
photoelectric effect. For any frequency of light above the threshold frequency, the kinetic energy of ejected electron
will be proportional to the energy of the incoming photon.

Example 6.2

Calculating the Energy of Radiation

When we see light from a neon sign, we are observing radiation from excited neon atoms. If this radiation
has a wavelength of 640 nm, what is the energy of the photon being emitted?

Solution

We use the part of Planck's equation that includes the wavelength, λ, and convert units of nanometers to
meters so that the units of λ and c are the same.

E = hc
λ
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E = (6.626 × 10−34 Js)(2.998 × 108 ms −1)

(640nm)⎛⎝
1 m

109 nm

⎞
⎠

E = 3.10 × 10−19 J

Check Your Learning

The microwaves in an oven are of a specific frequency that will heat the water molecules contained in food.
(This is why most plastics and glass do not become hot in a microwave oven-they do not contain water

molecules.) This frequency is about 3 × 109 Hz. What is the energy of one photon in these microwaves?

Answer: 2 × 10−24 J

Use this simulation program (http://openstaxcollege.org/l/16photelec) to
experiment with the photoelectric effect to see how intensity, frequency, type of
metal, and other factors influence the ejected photons.

Example 6.3

Photoelectric Effect

Identify which of the following statements are false and, where necessary, change the underlined word or
phrase to make them true, consistent with Einstein's explanation of the photoelectric effect.

(a) Increasing the brightness of incoming light increases the kinetic energy of the ejected electrons.

(b) Increasing the wavelength of incoming light increases the kinetic energy of the ejected electrons.

(c) Increasing the brightness of incoming light increases the number of ejected electrons.

(d) Increasing the frequency of incoming light can increase the number of ejected electrons.

Solution

(a) False. Increasing the brightness of incoming light has no effect on the kinetic energy of the ejected
electrons. Only energy, not the number or amplitude, of the photons influences the kinetic energy of the
electrons.

(b) False. Increasing the frequency of incoming light increases the kinetic energy of the ejected electrons.
Frequency is proportional to energy and inversely proportional to wavelength. Frequencies above the
threshold value transfer the excess energy into the kinetic energy of the electrons.

(c) True. Because the number of collisions with photons increases with brighter light, the number of ejected
electrons increases.

(d) True with regard to the threshold energy binding the electrons to the metal. Below this threshold,
electrons are not emitted and above it they are. Once over the threshold value, further increasing the
frequency does not increase the number of ejected electrons

Check Your Learning

Link to Learning
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Calculate the threshold energy in kJ/mol of electrons in aluminum, given that the lowest frequency photon

for which the photoelectric effect is observed is 9.87 × 1014 Hz.

Answer: 3.94 × 105 kJ/mol

Line Spectra

Another paradox within the classical electromagnetic theory that scientists in the late nineteenth century struggled
with concerned the light emitted from atoms and molecules. When solids, liquids, or condensed gases are heated
sufficiently, they radiate some of the excess energy as light. Photons produced in this manner have a range of energies,
and thereby produce a continuous spectrum in which an unbroken series of wavelengths is present. Most of the light
generated from stars (including our sun) is produced in this fashion. You can see all the visible wavelengths of light
present in sunlight by using a prism to separate them. As can be seen in Figure 6.9, sunlight also contains UV light
(shorter wavelengths) and IR light (longer wavelengths) that can be detected using instruments but that are invisible to
the human eye. Incandescent (glowing) solids such as tungsten filaments in incandescent lights also give off light that
contains all wavelengths of visible light. These continuous spectra can often be approximated by blackbody radiation
curves at some appropriate temperature, such as those shown in Figure 6.10.

In contrast to continuous spectra, light can also occur as discrete or line spectra having very narrow line widths
interspersed throughout the spectral regions such as those shown in Figure 6.13. Exciting a gas at low partial
pressure using an electrical current, or heating it, will produce line spectra. Fluorescent light bulbs and neon signs
operate in this way (Figure 6.12). Each element displays its own characteristic set of lines, as do molecules, although
their spectra are generally much more complicated.

Figure 6.12 Neon signs operate by exciting a gas at low partial pressure using an electrical current. This sign show
the elaborate artistic effects that can be achieved. (credit: Dave Shaver)

Each emission line consists of a single wavelength of light, which implies that the light emitted by a gas consists of a
set of discrete energies. For example, when an electric discharge passes through a tube containing hydrogen gas at low
pressure, the H2 molecules are broken apart into separate H atoms, we see a blue-pink color. Passing the light through

a prism produces a line spectrum, indicating that this light is composed of photons of four visible wavelengths, as
shown in Figure 6.13.
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Figure 6.13 Compare the two types of emission spectra: continuous spectrum of white light (top) and the line
spectra of the light from excited sodium, hydrogen, calcium, and mercury atoms.

The origin of discrete spectra in atoms and molecules was extremely puzzling to scientists in the late nineteenth
century, since according to classical electromagnetic theory, only continuous spectra should be observed. Even more
puzzling, in 1885, Johann Balmer was able to derive an empirical equation that related the four visible wavelengths
of light emitted by hydrogen atoms to whole integers. That equation is the following one, in which k is a constant:

1
λ = k⎛

⎝
1
4 − 1

n2
⎞
⎠, n = 3, 4, 5, 6

Other discrete lines for the hydrogen atom were found in the UV and IR regions. Johannes Rydberg generalized
Balmer's work and developed an empirical formula that predicted all of hydrogen's emission lines, not just those

restricted to the visible range, where, n1 and n2 are integers, n1 < n2, and R∞ is the Rydberg constant (1.097 × 107

m−1).

1
λ = R∞

⎛

⎝
⎜ 1

n1
2 − 1

n2
2

⎞

⎠
⎟

Even in the late nineteenth century, spectroscopy was a very precise science, and so the wavelengths of hydrogen
were measured to very high accuracy, which implied that the Rydberg constant could be determined very precisely
as well. That such a simple formula as the Rydberg formula could account for such precise measurements seemed
astounding at the time, but it was the eventual explanation for emission spectra by Neils Bohr in 1913 that ultimately
convinced scientists to abandon classical physics and spurred the development of modern quantum mechanics.

Chapter 6 Electronic Structure and Periodic Properties of Elements 295



6.2 The Bohr Model

By the end of this section, you will be able to:

• Describe the Bohr model of the hydrogen atom

• Use the Rydberg equation to calculate energies of light emitted or absorbed by hydrogen atoms

Following the work of Ernest Rutherford and his colleagues in the early twentieth century, the picture of atoms
consisting of tiny dense nuclei surrounded by lighter and even tinier electrons continually moving about the nucleus
was well established. This picture was called the planetary model, since it pictured the atom as a miniature “solar
system” with the electrons orbiting the nucleus like planets orbiting the sun. The simplest atom is hydrogen,
consisting of a single proton as the nucleus about which a single electron moves. The electrostatic force attracting
the electron to the proton depends only on the distance between the two particles. The electrostatic force has the
same form as the gravitational force between two mass particles except that the electrostatic force depends on the
magnitudes of the charges on the particles (+1 for the proton and −1 for the electron) instead of the magnitudes of
the particle masses that govern the gravitational force. Since forces can be derived from potentials, it is convenient
to work with potentials instead, since they are forms of energy. The electrostatic potential is also called the Coulomb
potential. Because the electrostatic potential has the same form as the gravitational potential, according to classical
mechanics, the equations of motion should be similar, with the electron moving around the nucleus in circular or
elliptical orbits (hence the label “planetary” model of the atom). Potentials of the form V(r) that depend only on
the radial distance r are known as central potentials. Central potentials have spherical symmetry, and so rather than
specifying the position of the electron in the usual Cartesian coordinates (x, y, z), it is more convenient to use polar
spherical coordinates centered at the nucleus, consisting of a linear coordinate r and two angular coordinates, usually
specified by the Greek letters theta (θ) and phi (Φ). These coordinates are similar to the ones used in GPS devices
and most smart phones that track positions on our (nearly) spherical earth, with the two angular coordinates specified
by the latitude and longitude, and the linear coordinate specified by sea-level elevation. Because of the spherical
symmetry of central potentials, the energy and angular momentum of the classical hydrogen atom are constants, and
the orbits are constrained to lie in a plane like the planets orbiting the sun. This classical mechanics description of
the atom is incomplete, however, since an electron moving in an elliptical orbit would be accelerating (by changing
direction) and, according to classical electromagnetism, it should continuously emit electromagnetic radiation. This
loss in orbital energy should result in the electron’s orbit getting continually smaller until it spirals into the nucleus,
implying that atoms are inherently unstable.

In 1913, Niels Bohr attempted to resolve the atomic paradox by ignoring classical electromagnetism’s prediction that
the orbiting electron in hydrogen would continuously emit light. Instead, he incorporated into the classical mechanics
description of the atom Planck’s ideas of quantization and Einstein’s finding that light consists of photons whose
energy is proportional to their frequency. Bohr assumed that the electron orbiting the nucleus would not normally
emit any radiation (the stationary state hypothesis), but it would emit or absorb a photon if it moved to a different
orbit. The energy absorbed or emitted would reflect differences in the orbital energies according to this equation:

∣ ΔE ∣ = ∣ Ef − Ei ∣ = hν = hc
λ

In this equation, h is Planck’s constant and Ei and Ef are the initial and final orbital energies, respectively. The absolute

value of the energy difference is used, since frequencies and wavelengths are always positive. Instead of allowing for
continuous values for the angular momentum, energy, and orbit radius, Bohr assumed that only discrete values for
these could occur (actually, quantizing any one of these would imply that the other two are also quantized). Bohr’s
expression for the quantized energies is:

En = − k
n2 , n = 1, 2, 3, …

In this expression, k is a constant comprising fundamental constants such as the electron mass and charge and Planck’s
constant. Inserting the expression for the orbit energies into the equation for ΔE gives
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ΔE = k
⎛

⎝
⎜ 1

n1
2 − 1

n2
2

⎞

⎠
⎟ = hc

λ

or

1
λ = k

hc
⎛

⎝
⎜ 1

n1
2 − 1

n2
2

⎞

⎠
⎟

which is identical to the Rydberg equation for R∞ = k
hc. When Bohr calculated his theoretical value for the

Rydberg constant, R∞, and compared it with the experimentally accepted value, he got excellent agreement. Since

the Rydberg constant was one of the most precisely measured constants at that time, this level of agreement was
astonishing and meant that Bohr’s model was taken seriously, despite the many assumptions that Bohr needed to
derive it.

The lowest few energy levels are shown in Figure 6.14. One of the fundamental laws of physics is that matter is
most stable with the lowest possible energy. Thus, the electron in a hydrogen atom usually moves in the n = 1 orbit,
the orbit in which it has the lowest energy. When the electron is in this lowest energy orbit, the atom is said to be in its
ground electronic state (or simply ground state). If the atom receives energy from an outside source, it is possible for
the electron to move to an orbit with a higher n value and the atom is now in an excited electronic state (or simply
an excited state) with a higher energy. When an electron transitions from an excited state (higher energy orbit) to a
less excited state, or ground state, the difference in energy is emitted as a photon. Similarly, if a photon is absorbed
by an atom, the energy of the photon moves an electron from a lower energy orbit up to a more excited one. We can
relate the energy of electrons in atoms to what we learned previously about energy. The law of conservation of energy
says that we can neither create nor destroy energy. Thus, if a certain amount of external energy is required to excite an
electron from one energy level to another, that same amount of energy will be liberated when the electron returns to
its initial state (Figure 6.15). In effect, an atom can “store” energy by using it to promote an electron to a state with
a higher energy and release it when the electron returns to a lower state. The energy can be released as one quantum
of energy, as the electron returns to its ground state (say, from n = 5 to n = 1), or it can be released as two or more
smaller quanta as the electron falls to an intermediate state, then to the ground state (say, from n = 5 to n = 4, emitting
one quantum, then to n = 1, emitting a second quantum).

Since Bohr’s model involved only a single electron, it could also be applied to the single electron ions He+, Li2+,

Be3+, and so forth, which differ from hydrogen only in their nuclear charges, and so one-electron atoms and ions are
collectively referred to as hydrogen-like atoms. The energy expression for hydrogen-like atoms is a generalization of
the hydrogen atom energy, in which Z is the nuclear charge (+1 for hydrogen, +2 for He, +3 for Li, and so on) and k

has a value of 2.179 × 10–18 J.

En = −kZ 2

n2

The sizes of the circular orbits for hydrogen-like atoms are given in terms of their radii by the following expression,

in which α0 is a constant called the Bohr radius, with a value of 5.292 × 10−11 m:

r = n2

Z a0

The equation also shows us that as the electron’s energy increases (as n increases), the electron is found at greater
distances from the nucleus. This is implied by the inverse dependence on r in the Coulomb potential, since, as the
electron moves away from the nucleus, the electrostatic attraction between it and the nucleus decreases, and it is held
less tightly in the atom. Note that as n gets larger and the orbits get larger, their energies get closer to zero, and so the
limits n ⟶ ∞ n ⟶ ∞, and r ⟶ ∞ r ⟶ ∞ imply that E = 0 corresponds to the ionization limit where the
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electron is completely removed from the nucleus. Thus, for hydrogen in the ground state n = 1, the ionization energy
would be:

ΔE = En ⟶ ∞ − E1 = 0 + k = k

With three extremely puzzling paradoxes now solved (blackbody radiation, the photoelectric effect, and the hydrogen
atom), and all involving Planck’s constant in a fundamental manner, it became clear to most physicists at that time
that the classical theories that worked so well in the macroscopic world were fundamentally flawed and could not
be extended down into the microscopic domain of atoms and molecules. Unfortunately, despite Bohr’s remarkable
achievement in deriving a theoretical expression for the Rydberg constant, he was unable to extend his theory to the
next simplest atom, He, which only has two electrons. Bohr’s model was severely flawed, since it was still based on
the classical mechanics notion of precise orbits, a concept that was later found to be untenable in the microscopic
domain, when a proper model of quantum mechanics was developed to supersede classical mechanics.

Figure 6.14 Quantum numbers and energy levels in a hydrogen atom. The more negative the calculated value, the
lower the energy.

Example 6.4

Calculating the Energy of an Electron in a Bohr Orbit

Early researchers were very excited when they were able to predict the energy of an electron at a particular
distance from the nucleus in a hydrogen atom. If a spark promotes the electron in a hydrogen atom into an
orbit with n = 3, what is the calculated energy, in joules, of the electron?

Solution

The energy of the electron is given by this equation:

E = −kZ 2

n2

The atomic number, Z, of hydrogen is 1; k = 2.179 × 10–18 J; and the electron is characterized by an n

value of 3. Thus,

E = −(2.179 × 10−18 J) × (1)2

(3)2 = −2.421 × 10−19 J
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Check Your Learning

The electron in Figure 6.15 is promoted even further to an orbit with n = 6. What is its new energy?

Answer: −6.053 × 10–20 J

Figure 6.15 The horizontal lines show the relative energy of orbits in the Bohr model of the hydrogen atom, and the
vertical arrows depict the energy of photons absorbed (left) or emitted (right) as electrons move between these orbits.

Example 6.5

Calculating the Energy and Wavelength of Electron Transitions in a
One–electron (Bohr) System

What is the energy (in joules) and the wavelength (in meters) of the line in the spectrum of hydrogen that
represents the movement of an electron from Bohr orbit with n = 4 to the orbit with n = 6? In what part of
the electromagnetic spectrum do we find this radiation?

Solution

In this case, the electron starts out with n = 4, so n1 = 4. It comes to rest in the n = 6 orbit, so n2 = 6. The

difference in energy between the two states is given by this expression:

ΔE = E1 − E2 = 2.179 × 10−18
⎛

⎝
⎜ 1

n1
2 − 1

n2
2

⎞

⎠
⎟
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ΔE = 2.179 × 10−18 ⎛
⎝

1
42 − 1

62
⎞
⎠ J

ΔE = 2.179 × 10−18 ⎛
⎝

1
16 − 1

36
⎞
⎠ J

ΔE = 7.566 × 10−20 J

This energy difference is positive, indicating a photon enters the system (is absorbed) to excite the electron
from the n = 4 orbit up to the n = 6 orbit. The wavelength of a photon with this energy is found by the

expression E= hc
λ . Rearrangement gives:

λ = hc
E

= ⎛
⎝6.626 × 10−34 J s ⎞

⎠ × 2.998 × 108 m s −1

7.566 × 10−20 J

= 2.626 × 10−6 m

From Figure 6.3, we can see that this wavelength is found in the infrared portion of the electromagnetic
spectrum.

Check Your Learning

What is the energy in joules and the wavelength in meters of the photon produced when an electron falls

from the n = 5 to the n = 3 level in a He+ ion (Z = 2 for He+)?

Answer: 6.198 × 10–19 J; 3.205 × 10−7 m

Bohr’s model of the hydrogen atom provides insight into the behavior of matter at the microscopic level, but it is
does not account for electron–electron interactions in atoms with more than one electron. It does introduce several
important features of all models used to describe the distribution of electrons in an atom. These features include the
following:

• The energies of electrons (energy levels) in an atom are quantized, described by quantum numbers: integer
numbers having only specific allowed value and used to characterize the arrangement of electrons in an atom.

• An electron’s energy increases with increasing distance from the nucleus.

• The discrete energies (lines) in the spectra of the elements result from quantized electronic energies.

Of these features, the most important is the postulate of quantized energy levels for an electron in an atom. As a
consequence, the model laid the foundation for the quantum mechanical model of the atom. Bohr won a Nobel Prize
in Physics for his contributions to our understanding of the structure of atoms and how that is related to line spectra
emissions.
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6.3 Development of Quantum Theory

By the end of this section, you will be able to:

• Extend the concept of wave–particle duality that was observed in electromagnetic radiation to matter

as well

• Understand the general idea of the quantum mechanical description of electrons in an atom, and that

it uses the notion of three-dimensional wave functions, or orbitals, that define the distribution of

probability to find an electron in a particular part of space

• List and describe traits of the four quantum numbers that form the basis for completely specifying the

state of an electron in an atom

Bohr’s model explained the experimental data for the hydrogen atom and was widely accepted, but it also raised many
questions. Why did electrons orbit at only fixed distances defined by a single quantum number n = 1, 2, 3, and so
on, but never in between? Why did the model work so well describing hydrogen and one-electron ions, but could not
correctly predict the emission spectrum for helium or any larger atoms? To answer these questions, scientists needed
to completely revise the way they thought about matter.

Behavior in the Microscopic World

We know how matter behaves in the macroscopic world—objects that are large enough to be seen by the naked eye
follow the rules of classical physics. A billiard ball moving on a table will behave like a particle: It will continue in
a straight line unless it collides with another ball or the table cushion, or is acted on by some other force (such as
friction). The ball has a well-defined position and velocity (or a well-defined momentum, p = mv, defined by mass m
and velocity v) at any given moment. In other words, the ball is moving in a classical trajectory. This is the typical
behavior of a classical object.

When waves interact with each other, they show interference patterns that are not displayed by macroscopic particles
such as the billiard ball. For example, interacting waves on the surface of water can produce interference patters
similar to those shown on Figure 6.16. This is a case of wave behavior on the macroscopic scale, and it is clear that
particles and waves are very different phenomena in the macroscopic realm.

Figure 6.16 An interference pattern on the water surface is formed by interacting waves. The waves are caused by
reflection of water from the rocks. (credit: modification of work by Sukanto Debnath)

As technological improvements allowed scientists to probe the microscopic world in greater detail, it became
increasingly clear by the 1920s that very small pieces of matter follow a different set of rules from those we observe
for large objects. The unquestionable separation of waves and particles was no longer the case for the microscopic
world.

One of the first people to pay attention to the special behavior of the microscopic world was Louis de Broglie.
He asked the question: If electromagnetic radiation can have particle-like character, can electrons and other
submicroscopic particles exhibit wavelike character? In his 1925 doctoral dissertation, de Broglie extended the
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wave–particle duality of light that Einstein used to resolve the photoelectric-effect paradox to material particles. He
predicted that a particle with mass m and velocity v (that is, with linear momentum p) should also exhibit the behavior
of a wave with a wavelength value λ, given by this expression in which h is the familiar Planck’s constant:

λ = h
mv = h

p

This is called the de Broglie wavelength. Unlike the other values of λ discussed in this chapter, the de Broglie
wavelength is a characteristic of particles and other bodies, not electromagnetic radiation (note that this equation
involves velocity [v, m/s], not frequency [ν, Hz]. Although these two symbols are identical, they mean very different
things). Where Bohr had postulated the electron as being a particle orbiting the nucleus in quantized orbits, de Broglie
argued that Bohr’s assumption of quantization can be explained if the electron is considered not as a particle, but
rather as a circular standing wave such that only an integer number of wavelengths could fit exactly within the orbit
(Figure 6.17).

Figure 6.17 If an electron is viewed as a wave circling around the nucleus, an integer number of wavelengths must
fit into the orbit for this standing wave behavior to be possible.

For a circular orbit of radius r, the circumference is 2πr, and so de Broglie’s condition is:

2πr = nλ, n = 1, 2, 3, …

Since the de Broglie expression relates the wavelength to the momentum and, hence, velocity, this implies:

2πr = nλ = nh
p = nh

mv = nhr
mvr = nhr

L

This expression can be rearranged to give Bohr’s formula for the quantization of the angular momentum:

L = nh
2π = n

ℏ

Classical angular momentum L for a circular motion is equal to the product of the radius of the circle and the
momentum of the moving particle p.

L = rp = rmv (for a circular motion)
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Figure 6.18 The diagram shows angular momentum for a circular motion.

Shortly after de Broglie proposed the wave nature of matter, two scientists at Bell Laboratories, C. J. Davisson and
L. H. Germer, demonstrated experimentally that electrons can exhibit wavelike behavior by showing an interference
pattern for electrons travelling through a regular atomic pattern in a crystal. The regularly spaced atomic layers served
as slits, as used in other interference experiments. Since the spacing between the layers serving as slits needs to be
similar in size to the wavelength of the tested wave for an interference pattern to form, Davisson and Germer used
a crystalline nickel target for their “slits,” since the spacing of the atoms within the lattice was approximately the
same as the de Broglie wavelengths of the electrons that they used. Figure 6.19 shows an interference pattern. It
is strikingly similar to the interference patterns for light shown in Figure 6.6. The wave–particle duality of matter
can be seen in Figure 6.19 by observing what happens if electron collisions are recorded over a long period of
time. Initially, when only a few electrons have been recorded, they show clear particle-like behavior, having arrived
in small localized packets that appear to be random. As more and more electrons arrived and were recorded, a clear
interference pattern that is the hallmark of wavelike behavior emerged. Thus, it appears that while electrons are small
localized particles, their motion does not follow the equations of motion implied by classical mechanics, but instead
it is governed by some type of a wave equation that governs a probability distribution even for a single electron’s
motion. Thus the wave–particle duality first observed with photons is actually a fundamental behavior intrinsic to all
quantum particles.
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Figure 6.19 (a) The interference pattern for electrons passing through very closely spaced slits demonstrates that
quantum particles such as electrons can exhibit wavelike behavior. (b) The experimental results illustrated here
demonstrate the wave–particle duality in electrons. The electrons pass through very closely spaced slits, forming an
interference pattern, with increasing numbers of electrons being recorded from the left image to the right. With only a
few electrons recorded, it is clear that the electrons arrive as individual localized “particles,” but in a seemingly
random pattern. As more electrons arrive, a wavelike interference pattern begins to emerge. Note that the probability
of the final electron location is still governed by the wave-type distribution, even for a single electron, but it can be
observed more easily if many electron collisions have been recorded.

View the Dr. Quantum – Double Slit Experiment cartoon
(http://openstaxcollege.org/l/16duality) for an easy-to-understand description of
wave–particle duality and the associated experiments.

Example 6.6

Calculating the Wavelength of a Particle

Link to Learning
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If an electron travels at a velocity of 1.000 × 107 m s–1 and has a mass of 9.109 × 10–28 g, what is its

wavelength?

Solution

We can use de Broglie’s equation to solve this problem, but we first must do a unit conversion of Planck’s

constant. You learned earlier that 1 J = 1 kg m2/s2. Thus, we can write h = 6.626 × 10–34 J s as 6.626 ×

10–34 kg m2/s.

λ = h
mv

= 6.626 × 10−34 kg m2 /s
⎛
⎝9.109 × 10−31 kg⎞

⎠
⎛
⎝1.000 × 107 m/s⎞

⎠

= 7.274 × 10−11 m

This is a small value, but it is significantly larger than the size of an electron in the classical (particle) view.
This size is the same order of magnitude as the size of an atom. This means that electron wavelike behavior
is going to be noticeable in an atom.

Check Your Learning

Calculate the wavelength of a softball with a mass of 100 g traveling at a velocity of 35 m s–1, assuming
that it can be modeled as a single particle.

Answer: 1.9 × 10–34 m. We never think of a thrown softball having a wavelength, since this wavelength is

so small it is impossible for our senses or any known instrument to detect (strictly speaking, the wavelength
of a real baseball would correspond to the wavelengths of its constituent atoms and molecules, which, while

much larger than this value, would still be microscopically tiny). The de Broglie wavelength is only
appreciable for matter that has a very small mass and/or a very high velocity.

Werner Heisenberg considered the limits of how accurately we can measure properties of an electron or other
microscopic particles. He determined that there is a fundamental limit to how accurately one can measure both a
particle’s position and its momentum simultaneously. The more accurately we measure the momentum of a particle,
the less accurately we can determine its position at that time, and vice versa. This is summed up in what we now
call the Heisenberg uncertainty principle: It is fundamentally impossible to determine simultaneously and exactly
both the momentum and the position of a particle. For a particle of mass m moving with velocity vx in the x direction

(or equivalently with momentum px), the product of the uncertainty in the position, Δx, and the uncertainty in the

momentum, Δpx , must be greater than or equal to

ℏ

2 (recall that

ℏ

= h
2π , the value of Planck’s constant divided

by 2π).

Δx × Δpx = (Δx)(mΔv) ≥

ℏ

2

This equation allows us to calculate the limit to how precisely we can know both the simultaneous position of
an object and its momentum. For example, if we improve our measurement of an electron’s position so that the

uncertainty in the position (Δx) has a value of, say, 1 pm (10–12 m, about 1% of the diameter of a hydrogen atom),
then our determination of its momentum must have an uncertainty with a value of at least

⎡
⎣Δp = mΔv = h

(2Δx)
⎤
⎦ =

⎛
⎝1.055 × 10−34 kg m2 /s⎞

⎠
⎛
⎝2 × 1 × 10−12 m⎞

⎠
= 5 × 10−23 kg m/s.
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The value of ħ is not large, so the uncertainty in the position or momentum of a macroscopic object like a baseball is
too insignificant to observe. However, the mass of a microscopic object such as an electron is small enough that the
uncertainty can be large and significant.

It should be noted that Heisenberg’s uncertainty principle is not just limited to uncertainties in position and
momentum, but it also links other dynamical variables. For example, when an atom absorbs a photon and makes a
transition from one energy state to another, the uncertainty in the energy and the uncertainty in the time required for

the transition are similarly related, as ΔE Δt ≥

ℏ

2. As will be discussed later, even the vector components of angular

momentum cannot all be specified exactly simultaneously.

Heisenberg’s principle imposes ultimate limits on what is knowable in science. The uncertainty principle can
be shown to be a consequence of wave–particle duality, which lies at the heart of what distinguishes modern
quantum theory from classical mechanics. Recall that the equations of motion obtained from classical mechanics are
trajectories where, at any given instant in time, both the position and the momentum of a particle can be determined
exactly. Heisenberg’s uncertainty principle implies that such a view is untenable in the microscopic domain and that
there are fundamental limitations governing the motion of quantum particles. This does not mean that microscopic
particles do not move in trajectories, it is just that measurements of trajectories are limited in their precision. In the
realm of quantum mechanics, measurements introduce changes into the system that is being observed.

Read this article (http://openstaxcollege.org/l/16uncertainty) that describes a
recent macroscopic demonstration of the uncertainty principle applied to
microscopic objects.

The Quantum–Mechanical Model of an Atom

Shortly after de Broglie published his ideas that the electron in a hydrogen atom could be better thought of as
being a circular standing wave instead of a particle moving in quantized circular orbits, as Bohr had argued, Erwin
Schrödinger extended de Broglie’s work by incorporating the de Broglie relation into a wave equation, deriving what
is today known as the Schrödinger equation. When Schrödinger applied his equation to hydrogen-like atoms, he was
able to reproduce Bohr’s expression for the energy and, thus, the Rydberg formula governing hydrogen spectra, and he
did so without having to invoke Bohr’s assumptions of stationary states and quantized orbits, angular momenta, and
energies; quantization in Schrödinger’s theory was a natural consequence of the underlying mathematics of the wave
equation. Like de Broglie, Schrödinger initially viewed the electron in hydrogen as being a physical wave instead of
a particle, but where de Broglie thought of the electron in terms of circular stationary waves, Schrödinger properly
thought in terms of three-dimensional stationary waves, or wavefunctions, represented by the Greek letter psi, ψ. A
few years later, Max Born proposed an interpretation of the wavefunction ψ that is still accepted today: Electrons
are still particles, and so the waves represented by ψ are not physical waves but, instead, are complex probability

amplitudes. The square of the magnitude of a wavefunction ∣ψ ∣2 describes the probability of the quantum particle

being present near a certain location in space. This means that wavefunctions can be used to determine the distribution
of the electron’s density with respect to the nucleus in an atom. In the most general form, the Schrödinger equation
can be written as:

Ĥψ = Eψ

Link to Learning
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Ĥ is the Hamiltonian operator, a set of mathematical operations representing the total energy of the quantum particle

(such as an electron in an atom), ψ is the wavefunction of this particle that can be used to find the special distribution
of the probability of finding the particle, and E is the actual value of the total energy of the particle.

Schrödinger’s work, as well as that of Heisenberg and many other scientists following in their footsteps, is generally
referred to as quantum mechanics.

You may also have heard of Schrödinger because of his famous thought
experiment. This story (http://openstaxcollege.org/l/16superpos) explains the
concepts of superposition and entanglement as related to a cat in a box with
poison.

Understanding Quantum Theory of Electrons in Atoms

The goal of this section is to understand the electron orbitals (location of electrons in atoms), their different energies,
and other properties. The use of quantum theory provides the best understanding to these topics. This knowledge is a
precursor to chemical bonding.

As was described previously, electrons in atoms can exist only on discrete energy levels but not between them. It is
said that the energy of an electron in an atom is quantized, that is, it can be equal only to certain specific values and
can jump from one energy level to another but not transition smoothly or stay between these levels.

The energy levels are labeled with an n value, where n = 1, 2, 3, …. Generally speaking, the energy of an electron in
atom is greater for greater values of n. This number, n, is referred to as the principle quantum number. The principle
quantum number defines the location of the energy level. It is essentially the same concept as the n in the Bohr
atom description. Another name for the principal quantum number is the shell number. The shells of an atom can be
thought of concentric circles radiating out from the nucleus. The electrons that belong to a specific shell are most
likely to be found within the corresponding circular area. The further we proceed from the nucleus, the higher the shell
number, and so the higher the energy level (Figure 6.20). The positively charged protons in the nucleus stabilize the
electronic orbitals by electrostatic attraction between the positive charges of the protons and the negative charges of
the electrons. So the further away the electron is from the nucleus, the greater the energy it has.

Figure 6.20 Different shells are numbered by principle quantum numbers.

Link to Learning
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This quantum mechanical model for where electrons reside in an atom can be used to look at electronic transitions, the
events when an electron moves from one energy level to another. If the transition is to a higher energy level, energy
is absorbed, and the energy change has a positive value. To obtain the amount of energy necessary for the transition
to a higher energy level, a photon is absorbed by the atom. A transition to a lower energy level involves a release of
energy, and the energy change is negative. This process is accompanied by emission of a photon by the atom. The
following equation summarizes these relationships and is based on the hydrogen atom:

ΔE = Efina − Einitial

= −2.18 × 10−18
⎛

⎝
⎜ 1

nf
2 − 1

ni
2

⎞

⎠
⎟ J

The values nf and ni are the final and initial energy states of the electron. Example 6.5 in the previous section of the

chapter demonstrates calculations of such energy changes.

The principal quantum number is one of three quantum numbers used to characterize an orbital. An atomic orbital,
which is distinct from an orbit, is a general region in an atom within which an electron is most probable to reside. The
quantum mechanical model specifies the probability of finding an electron in the three-dimensional space around the
nucleus and is based on solutions of the Schrödinger equation. In addition, the principle quantum number defines the
energy of an electron in a hydrogen or hydrogen-like atom or an ion (an atom or an ion with only one electron) and
the general region in which discrete energy levels of electrons in a multi-electron atoms and ions are located.

Another quantum number is l, the angular momentum quantum number. It is an integer that defines the shape of
the orbital, and takes on the values, l = 0, 1, 2, …, n – 1. This means that an orbital with n = 1 can have only one
value of l, l = 0, whereas n = 2 permits l = 0 and l = 1, and so on. The principal quantum number defines the general
size and energy of the orbital. The l value specifies the shape of the orbital. Orbitals with the same value of l form a
subshell. In addition, the greater the angular momentum quantum number, the greater is the angular momentum of an
electron at this orbital.

Orbitals with l = 0 are called s orbitals (or the s subshells). The value l = 1 corresponds to the p orbitals. For a given
n, p orbitals constitute a p subshell (e.g., 3p if n = 3). The orbitals with l = 2 are called the d orbitals, followed by
the f-, g-, and h-orbitals for l = 3, 4, 5, and there are higher values we will not consider.

There are certain distances from the nucleus at which the probability density of finding an electron located at a
particular orbital is zero. In other words, the value of the wavefunction ψ is zero at this distance for this orbital. Such
a value of radius r is called a radial node. The number of radial nodes in an orbital is n – l – 1.

308 Chapter 6 Electronic Structure and Periodic Properties of Elements

This content is available for free at http://cnx.org/content/col11760/1.9



Figure 6.21 The graphs show the probability (y axis) of finding an electron for the 1s, 2s, 3s orbitals as a function of
distance from the nucleus.

Consider the examples in Figure 6.21. The orbitals depicted are of the s type, thus l = 0 for all of them. It can be
seen from the graphs of the probability densities that there are 1 – 0 – 1 = 0 places where the density is zero (nodes)
for 1s (n = 1), 2 – 0 – 1 = 1 node for 2s, and 3 – 0 – 1 = 2 nodes for the 3s orbitals.

The s subshell electron density distribution is spherical and the p subshell has a dumbbell shape. The d and f orbitals
are more complex. These shapes represent the three-dimensional regions within which the electron is likely to be
found.
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Figure 6.22 Shapes of s, p, d, and f orbitals. They can be constructed and described by (a) the values of the
magnetic quantum number or (b) with the axis that defines their orientation.

If an electron has an angular momentum (l ≠ 0), then this vector can point in different directions. In addition, the z
component of the angular momentum can have more than one value. This means that if a magnetic field is applied in
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the z direction, orbitals with different values of the z component of the angular momentum will have different energies
resulting from interacting with the field. The magnetic quantum number, called ml, specifies the z component of the

angular momentum for a particular orbital. For example, for an s orbital, l = 0, and the only value of ml is zero. For p

orbitals, l = 1, and ml can be equal to –1, 0, or +1. Generally speaking, ml can be equal to –l, –(l – 1), …, –1, 0, +1,

…, (l – 1), l. The total number of possible orbitals with the same value of l (a subshell) is 2l + 1. Thus, there is one s
orbital for a specific value of n, there are three p orbitals for n ≥ 2, four d orbitals for n ≥ 3, five f orbitals for n ≥ 4, and
so forth. The principle quantum number defines the general value of the electronic energy. The angular momentum
quantum number determines the shape of the orbital. And the magnetic quantum number specifies orientation of the
orbital in space, as can be seen in Figure 6.22.

Figure 6.23 The chart shows the energies of electron orbitals in a multi-electron atom.

Figure 6.23 illustrates the energy levels for various orbitals. The number before the orbital name (such as 2s, 3p, and
so forth) stands for the principle quantum number, n. The letter in the orbital name defines the subshell with a specific
angular momentum quantum number l = 0 for s orbitals, 1 for p orbitals, 2 for d orbitals. Finally, there are more than
one possible orbitals for l ≥ 1, each corresponding to a specific value of ml. In the case of a hydrogen atom or a one-

electron ion (such as He+, Li+, and so on), energies of all the orbitals with the same n are the same. This is called
a degeneracy, and the energy levels for the same principle quantum number, n, are called degenerate energy levels.
However, in atoms with more than one electron, this degeneracy is eliminated by the electron–electron interactions,
and orbitals that belong to different subshells have different energies, as shown on Figure 6.23. Orbitals within the
same subshell (for example ns, np, nd, nf, such as 2p, 3s) are still degenerate and have the same energy.

While the three quantum numbers discussed in the previous paragraphs work well for describing electron orbitals,
some experiments showed that they were not sufficient to explain all observed results. It was demonstrated in the
1920s that when hydrogen-line spectra are examined at extremely high resolution, some lines are actually not single
peaks but, rather, pairs of closely spaced lines. This is the so-called fine structure of the spectrum, and it implies that
there are additional small differences in energies of electrons even when they are located in the same orbital. These
observations led Samuel Goudsmit and George Uhlenbeck to propose that electrons have a fourth quantum number.
They called this the spin quantum number, or ms.

The other three quantum numbers, n, l, and ml, are properties of specific atomic orbitals that also define in what part

of the space an electron is most likely to be located. Orbitals are a result of solving the Schrödinger equation for
electrons in atoms. The electron spin is a different kind of property. It is a completely quantum phenomenon with no
analogues in the classical realm. In addition, it cannot be derived from solving the Schrödinger equation and is not
related to the normal spatial coordinates (such as the Cartesian x, y, and z). Electron spin describes an intrinsic electron
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“rotation” or “spinning.” Each electron acts as a tiny magnet or a tiny rotating object with an angular momentum,
even though this rotation cannot be observed in terms of the spatial coordinates.

The magnitude of the overall electron spin can only have one value, and an electron can only “spin” in one of two
quantized states. One is termed the α state, with the z component of the spin being in the positive direction of the z

axis. This corresponds to the spin quantum number ms = 1
2. The other is called the β state, with the z component of

the spin being negative and ms = − 1
2. Any electron, regardless of the atomic orbital it is located in, can only have

one of those two values of the spin quantum number. The energies of electrons having ms = − 1
2 and ms = 1

2 are

different if an external magnetic field is applied.

Figure 6.24 Electrons with spin values ±1
2 in an external magnetic field.

Figure 6.24 illustrates this phenomenon. An electron acts like a tiny magnet. Its moment is directed up (in the

positive direction of the z axis) for the 1
2 spin quantum number and down (in the negative z direction) for the spin

quantum number of − 1
2. A magnet has a lower energy if its magnetic moment is aligned with the external magnetic

field (the left electron on Figure 6.24) and a higher energy for the magnetic moment being opposite to the applied

field. This is why an electron with ms = 1
2 has a slightly lower energy in an external field in the positive z direction,

and an electron with ms = − 1
2 has a slightly higher energy in the same field. This is true even for an electron

occupying the same orbital in an atom. A spectral line corresponding to a transition for electrons from the same orbital
but with different spin quantum numbers has two possible values of energy; thus, the line in the spectrum will show
a fine structure splitting.

The Pauli Exclusion Principle

An electron in an atom is completely described by four quantum numbers: n, l, ml, and ms. The first three quantum

numbers define the orbital and the fourth quantum number describes the intrinsic electron property called spin. An
Austrian physicist Wolfgang Pauli formulated a general principle that gives the last piece of information that we need
to understand the general behavior of electrons in atoms. The Pauli exclusion principle can be formulated as follows:
No two electrons in the same atom can have exactly the same set of all the four quantum numbers. What this means
is that electrons can share the same orbital (the same set of the quantum numbers n, l, and ml), but only if their spin

quantum numbers ms have different values. Since the spin quantum number can only have two values ⎛
⎝±

1
2

⎞
⎠, no
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more than two electrons can occupy the same orbital (and if two electrons are located in the same orbital, they must
have opposite spins). Therefore, any atomic orbital can be populated by only zero, one, or two electrons.

The properties and meaning of the quantum numbers of electrons in atoms are briefly summarized in Table 6.1.

Quantum Numbers, Their Properties, and Significance

Name Symbol Allowed
values

Physical meaning

principle quantum number n 1, 2, 3, 4,

….

shell, the general region for the value of energy for

an electron on the orbital

angular momentum or azimuthal

quantum number

l 0 ≤ l ≤ n –

1

subshell, the shape of the orbital

magnetic quantum number ml – l ≤ ml ≤

l

orientation of the orbital

spin quantum number ms 1
2 , − 1

2
direction of the intrinsic quantum “spinning” of the

electron

Table 6.1

Example 6.7

Working with Shells and Subshells

Indicate the number of subshells, the number of orbitals in each subshell, and the values of l and ml for the

orbitals in the n = 4 shell of an atom.

Solution

For n = 4, l can have values of 0, 1, 2, and 3. Thus, s, p, d, and f subshells are found in the n = 4 shell of
an atom. For l = 0 (the s subshell), ml can only be 0. Thus, there is only one 4s orbital. For l = 1 (p-type

orbitals), m can have values of –1, 0, +1, so we find three 4p orbitals. For l = 2 (d-type orbitals), ml can have

values of –2, –1, 0, +1, +2, so we have five 4d orbitals. When l = 3 (f-type orbitals), ml can have values of

–3, –2, –1, 0, +1, +2, +3, and we can have seven 4f orbitals. Thus, we find a total of 16 orbitals in the n = 4
shell of an atom.

Check Your Learning

Identify the subshell in which electrons with the following quantum numbers are found: (a) n = 3, l = 1; (b)
n = 5, l = 3; (c) n = 2, l = 0.

Answer: (a) 3p (b) 5f (c) 2s

Example 6.8

Maximum Number of Electrons

Calculate the maximum number of electrons that can occupy a shell with (a) n = 2, (b) n = 5, and (c) n as a
variable. Note you are only looking at the orbitals with the specified n value, not those at lower energies.

Solution
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(a) When n = 2, there are four orbitals (a single 2s orbital, and three orbitals labeled 2p). These four orbitals
can contain eight electrons.

(b) When n = 5, there are five subshells of orbitals that we need to sum:

1 orbitals labeled 5s
3 orbitals labeled 5p
5 orbitals labeled 5d
7 orbitals labeled 5 f

+9 orbitals labeled 5g
25 orbitals total

Again, each orbital holds two electrons, so 50 electrons can fit in this shell.

(c) The number of orbitals in any shell n will equal n2
. There can be up to two electrons in each orbital, so

the maximum number of electrons will be 2 × n2

Check Your Learning

If a shell contains a maximum of 32 electrons, what is the principal quantum number, n?

Answer: n = 4

Example 6.9

Working with Quantum Numbers

Complete the following table for atomic orbitals:

Orbital n l ml degeneracy Radial nodes (no.)

4f

4 1

7 7 3

5d

Solution

The table can be completed using the following rules:

• The orbital designation is nl, where l = 0, 1, 2, 3, 4, 5, … is mapped to the letter sequence s, p, d, f,
g, h, …,

• The ml degeneracy is the number of orbitals within an l subshell, and so is 2l + 1 (there is one s

orbital, three p orbitals, five d orbitals, seven f orbitals, and so forth).

• The number of radial nodes is equal to n – l – 1.
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Orbital n l ml degeneracy Radial nodes (no.)

4f 4 3 7 0

4p 4 1 3 2

7f 7 3 7 3

5d 5 2 5 2

Check Your Learning

How many orbitals have l = 2 and n = 3?

Answer: The five degenerate 3d orbitals

6.4 Electronic Structure of Atoms (Electron

Configurations)

By the end of this section, you will be able to:

• Derive the predicted ground-state electron configurations of atoms

• Identify and explain exceptions to predicted electron configurations for atoms and ions

• Relate electron configurations to element classifications in the periodic table

Having introduced the basics of atomic structure and quantum mechanics, we can use our understanding of quantum
numbers to determine how atomic orbitals relate to one another. This allows us to determine which orbitals are
occupied by electrons in each atom. The specific arrangement of electrons in orbitals of an atom determines many of
the chemical properties of that atom.

Orbital Energies and Atomic Structure

The energy of atomic orbitals increases as the principal quantum number, n, increases. In any atom with two or more
electrons, the repulsion between the electrons makes energies of subshells with different values of l differ so that the
energy of the orbitals increases within a shell in the order s < p < d < f. Figure 6.25 depicts how these two trends
in increasing energy relate. The 1s orbital at the bottom of the diagram is the orbital with electrons of lowest energy.
The energy increases as we move up to the 2s and then 2p, 3s, and 3p orbitals, showing that the increasing n value has
more influence on energy than the increasing l value for small atoms. However, this pattern does not hold for larger
atoms. The 3d orbital is higher in energy than the 4s orbital. Such overlaps continue to occur frequently as we move
up the chart.
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Figure 6.25 Generalized energy-level diagram for atomic orbitals in an atom with two or more electrons (not to
scale).

Electrons in successive atoms on the periodic table tend to fill low-energy orbitals first. Thus, many students find
it confusing that, for example, the 5p orbitals fill immediately after the 4d, and immediately before the 6s. The
filling order is based on observed experimental results, and has been confirmed by theoretical calculations. As the
principal quantum number, n, increases, the size of the orbital increases and the electrons spend more time farther
from the nucleus. Thus, the attraction to the nucleus is weaker and the energy associated with the orbital is higher (less
stabilized). But this is not the only effect we have to take into account. Within each shell, as the value of l increases,
the electrons are less penetrating (meaning there is less electron density found close to the nucleus), in the order s
> p > d > f. Electrons that are closer to the nucleus slightly repel electrons that are farther out, offsetting the more
dominant electron–nucleus attractions slightly (recall that all electrons have −1 charges, but nuclei have +Z charges).
This phenomenon is called shielding and will be discussed in more detail in the next section. Electrons in orbitals
that experience more shielding are less stabilized and thus higher in energy. For small orbitals (1s through 3p), the
increase in energy due to n is more significant than the increase due to l; however, for larger orbitals the two trends
are comparable and cannot be simply predicted. We will discuss methods for remembering the observed order.

The arrangement of electrons in the orbitals of an atom is called the electron configuration of the atom. We describe
an electron configuration with a symbol that contains three pieces of information (Figure 6.26):

1. The number of the principal quantum shell, n,

2. The letter that designates the orbital type (the subshell, l), and

3. A superscript number that designates the number of electrons in that particular subshell.

For example, the notation 2p4 (read "two–p–four") indicates four electrons in a p subshell (l = 1) with a principal

quantum number (n) of 2. The notation 3d8 (read "three–d–eight") indicates eight electrons in the d subshell (i.e., l =
2) of the principal shell for which n = 3.
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Figure 6.26 The diagram of an electron configuration specifies the subshell (n and l value, with letter symbol) and
superscript number of electrons.

The Aufbau Principle

To determine the electron configuration for any particular atom, we can “build” the structures in the order of atomic
numbers. Beginning with hydrogen, and continuing across the periods of the periodic table, we add one proton at
a time to the nucleus and one electron to the proper subshell until we have described the electron configurations
of all the elements. This procedure is called the Aufbau principle, from the German word Aufbau (“to build up”).
Each added electron occupies the subshell of lowest energy available (in the order shown in Figure 6.25), subject
to the limitations imposed by the allowed quantum numbers according to the Pauli exclusion principle. Electrons
enter higher-energy subshells only after lower-energy subshells have been filled to capacity. Figure 6.27 illustrates
the traditional way to remember the filling order for atomic orbitals. Since the arrangement of the periodic table
is based on the electron configurations, Figure 6.28 provides an alternative method for determining the electron
configuration. The filling order simply begins at hydrogen and includes each subshell as you proceed in increasing
Z order. For example, after filling the 3p block up to Ar, we see the orbital will be 4s (K, Ca), followed by the 3d
orbitals.

Figure 6.27 The arrow leads through each subshell in the appropriate filling order for electron configurations. This
chart is straightforward to construct. Simply make a column for all the s orbitals with each n shell on a separate row.
Repeat for p, d, and f. Be sure to only include orbitals allowed by the quantum numbers (no 1p or 2d, and so forth).
Finally, draw diagonal lines from top to bottom as shown.
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Figure 6.28 This periodic table shows the electron configuration for each subshell. By “building up” from hydrogen,
this table can be used to determine the electron configuration for any atom on the periodic table.

We will now construct the ground-state electron configuration and orbital diagram for a selection of atoms in the first
and second periods of the periodic table. Orbital diagrams are pictorial representations of the electron configuration,
showing the individual orbitals and the pairing arrangement of electrons. We start with a single hydrogen atom
(atomic number 1), which consists of one proton and one electron. Referring to Figure 6.27 or Figure 6.28, we

would expect to find the electron in the 1s orbital. By convention, the ms = + 1
2 value is usually filled first. The

electron configuration and the orbital diagram are:

Following hydrogen is the noble gas helium, which has an atomic number of 2. The helium atom contains two protons
and two electrons. The first electron has the same four quantum numbers as the hydrogen atom electron (n = 1, l =

0, ml = 0, ms = + 1
2 ). The second electron also goes into the 1s orbital and fills that orbital. The second electron

has the same n, l, and ml quantum numbers, but must have the opposite spin quantum number, ms = − 1
2. This is in

accord with the Pauli exclusion principle: No two electrons in the same atom can have the same set of four quantum
numbers. For orbital diagrams, this means two arrows go in each box (representing two electrons in each orbital)
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and the arrows must point in opposite directions (representing paired spins). The electron configuration and orbital
diagram of helium are:

The n = 1 shell is completely filled in a helium atom.

The next atom is the alkali metal lithium with an atomic number of 3. The first two electrons in lithium fill the
1s orbital and have the same sets of four quantum numbers as the two electrons in helium. The remaining electron
must occupy the orbital of next lowest energy, the 2s orbital (Figure 6.27 or Figure 6.28). Thus, the electron
configuration and orbital diagram of lithium are:

An atom of the alkaline earth metal beryllium, with an atomic number of 4, contains four protons in the nucleus and
four electrons surrounding the nucleus. The fourth electron fills the remaining space in the 2s orbital.

An atom of boron (atomic number 5) contains five electrons. The n = 1 shell is filled with two electrons and three
electrons will occupy the n = 2 shell. Because any s subshell can contain only two electrons, the fifth electron must
occupy the next energy level, which will be a 2p orbital. There are three degenerate 2p orbitals (ml = −1, 0, +1) and

the electron can occupy any one of these p orbitals. When drawing orbital diagrams, we include empty boxes to depict
any empty orbitals in the same subshell that we are filling.

Carbon (atomic number 6) has six electrons. Four of them fill the 1s and 2s orbitals. The remaining two electrons
occupy the 2p subshell. We now have a choice of filling one of the 2p orbitals and pairing the electrons or of leaving
the electrons unpaired in two different, but degenerate, p orbitals. The orbitals are filled as described by Hund’s
rule: the lowest-energy configuration for an atom with electrons within a set of degenerate orbitals is that having the
maximum number of unpaired electrons. Thus, the two electrons in the carbon 2p orbitals have identical n, l, and ms

quantum numbers and differ in their ml quantum number (in accord with the Pauli exclusion principle). The electron

configuration and orbital diagram for carbon are:

Nitrogen (atomic number 7) fills the 1s and 2s subshells and has one electron in each of the three 2p orbitals, in
accordance with Hund’s rule. These three electrons have unpaired spins. Oxygen (atomic number 8) has a pair of
electrons in any one of the 2p orbitals (the electrons have opposite spins) and a single electron in each of the other
two. Fluorine (atomic number 9) has only one 2p orbital containing an unpaired electron. All of the electrons in the
noble gas neon (atomic number 10) are paired, and all of the orbitals in the n = 1 and the n = 2 shells are filled. The
electron configurations and orbital diagrams of these four elements are:
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The alkali metal sodium (atomic number 11) has one more electron than the neon atom. This electron must go into

the lowest-energy subshell available, the 3s orbital, giving a 1s22s22p63s1 configuration. The electrons occupying
the outermost shell orbital(s) (highest value of n) are called valence electrons, and those occupying the inner shell
orbitals are called core electrons (Figure 6.29). Since the core electron shells correspond to noble gas electron
configurations, we can abbreviate electron configurations by writing the noble gas that matches the core electron
configuration, along with the valence electrons in a condensed format. For our sodium example, the symbol [Ne]

represents core electrons, (1s22s22p6) and our abbreviated or condensed configuration is [Ne]3s1.

Figure 6.29 A core-abbreviated electron configuration (right) replaces the core electrons with the noble gas symbol
whose configuration matches the core electron configuration of the other element.

Similarly, the abbreviated configuration of lithium can be represented as [He]2s1, where [He] represents the
configuration of the helium atom, which is identical to that of the filled inner shell of lithium. Writing the
configurations in this way emphasizes the similarity of the configurations of lithium and sodium. Both atoms, which
are in the alkali metal family, have only one electron in a valence s subshell outside a filled set of inner shells.

Li: [He]2s1

Na: [Ne]3s1

The alkaline earth metal magnesium (atomic number 12), with its 12 electrons in a [Ne]3s2 configuration, is

analogous to its family member beryllium, [He]2s2. Both atoms have a filled s subshell outside their filled inner

shells. Aluminum (atomic number 13), with 13 electrons and the electron configuration [Ne]3s23p1, is analogous to

its family member boron, [He]2s22p1.

The electron configurations of silicon (14 electrons), phosphorus (15 electrons), sulfur (16 electrons), chlorine
(17 electrons), and argon (18 electrons) are analogous in the electron configurations of their outer shells to their
corresponding family members carbon, nitrogen, oxygen, fluorine, and neon, respectively, except that the principal
quantum number of the outer shell of the heavier elements has increased by one to n = 3. Figure 6.30 shows the
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lowest energy, or ground-state, electron configuration for these elements as well as that for atoms of each of the
known elements.

Figure 6.30 This version of the periodic table shows the outer-shell electron configuration of each element. Note
that down each group, the configuration is often similar.

When we come to the next element in the periodic table, the alkali metal potassium (atomic number 19), we might
expect that we would begin to add electrons to the 3d subshell. However, all available chemical and physical evidence
indicates that potassium is like lithium and sodium, and that the next electron is not added to the 3d level but is,
instead, added to the 4s level (Figure 6.30). As discussed previously, the 3d orbital with no radial nodes is higher
in energy because it is less penetrating and more shielded from the nucleus than the 4s, which has three radial

nodes. Thus, potassium has an electron configuration of [Ar]4s1. Hence, potassium corresponds to Li and Na in
its valence shell configuration. The next electron is added to complete the 4s subshell and calcium has an electron

configuration of [Ar]4s2. This gives calcium an outer-shell electron configuration corresponding to that of beryllium
and magnesium.

Beginning with the transition metal scandium (atomic number 21), additional electrons are added successively to the
3d subshell. This subshell is filled to its capacity with 10 electrons (remember that for l = 2 [d orbitals], there are 2l
+ 1 = 5 values of ml, meaning that there are five d orbitals that have a combined capacity of 10 electrons). The 4p

subshell fills next. Note that for three series of elements, scandium (Sc) through copper (Cu), yttrium (Y) through
silver (Ag), and lutetium (Lu) through gold (Au), a total of 10 d electrons are successively added to the (n – 1) shell
next to the n shell to bring that (n – 1) shell from 8 to 18 electrons. For two series, lanthanum (La) through lutetium
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(Lu) and actinium (Ac) through lawrencium (Lr), 14 f electrons (l = 3, 2l + 1 = 7 ml values; thus, seven orbitals with

a combined capacity of 14 electrons) are successively added to the (n – 2) shell to bring that shell from 18 electrons
to a total of 32 electrons.

Example 6.10

Quantum Numbers and Electron Configurations

What is the electron configuration and orbital diagram for a phosphorus atom? What are the four quantum
numbers for the last electron added?

Solution

The atomic number of phosphorus is 15. Thus, a phosphorus atom contains 15 electrons. The order of filling
of the energy levels is 1s, 2s, 2p, 3s, 3p, 4s, . . . The 15 electrons of the phosphorus atom will fill up to the
3p orbital, which will contain three electrons:

The last electron added is a 3p electron. Therefore, n = 3 and, for a p-type orbital, l = 1. The ml value

could be –1, 0, or +1. The three p orbitals are degenerate, so any of these ml values is correct. For unpaired

electrons, convention assigns the value of + 1
2 for the spin quantum number; thus, ms = + 1

2.

Check Your Learning

Identify the atoms from the electron configurations given:

(a) [Ar]4s23d5

(b) [Kr]5s24d105p6

Answer: (a) Mn (b) Xe

The periodic table can be a powerful tool in predicting the electron configuration of an element. However, we do find
exceptions to the order of filling of orbitals that are shown in Figure 6.27 or Figure 6.28. For instance, the electron
configurations (shown in Figure 6.30) of the transition metals chromium (Cr; atomic number 24) and copper (Cu;
atomic number 29), among others, are not those we would expect. In general, such exceptions involve subshells with
very similar energy, and small effects can lead to changes in the order of filling.

In the case of Cr and Cu, we find that half-filled and completely filled subshells apparently represent conditions of
preferred stability. This stability is such that an electron shifts from the 4s into the 3d orbital to gain the extra stability
of a half-filled 3d subshell (in Cr) or a filled 3d subshell (in Cu). Other exceptions also occur. For example, niobium

(Nb, atomic number 41) is predicted to have the electron configuration [Kr]5s24d3. Experimentally, we observe that

its ground-state electron configuration is actually [Kr]5s14d4. We can rationalize this observation by saying that the
electron–electron repulsions experienced by pairing the electrons in the 5s orbital are larger than the gap in energy
between the 5s and 4d orbitals. There is no simple method to predict the exceptions for atoms where the magnitude
of the repulsions between electrons is greater than the small differences in energy between subshells.

Electron Configurations and the Periodic Table

As described earlier, the periodic table arranges atoms based on increasing atomic number so that elements with the
same chemical properties recur periodically. When their electron configurations are added to the table (Figure 6.30),
we also see a periodic recurrence of similar electron configurations in the outer shells of these elements. Because they
are in the outer shells of an atom, valence electrons play the most important role in chemical reactions. The outer
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electrons have the highest energy of the electrons in an atom and are most easily lost or shared than the core electrons.
Valence electrons are also the determining factor in some physical properties of the elements.

Elements in any one group (or column) have the same number of valence electrons; the alkali metals lithium and
sodium each have only one valence electron, the alkaline earth metals beryllium and magnesium each have two, and
the halogens fluorine and chlorine each have seven valence electrons. The similarity in chemical properties among
elements of the same group occurs because they have the same number of valence electrons. It is the loss, gain, or
sharing of valence electrons that defines how elements react.

It is important to remember that the periodic table was developed on the basis of the chemical behavior of the
elements, well before any idea of their atomic structure was available. Now we can understand why the periodic table
has the arrangement it has—the arrangement puts elements whose atoms have the same number of valence electrons
in the same group. This arrangement is emphasized in Figure 6.30, which shows in periodic-table form the electron
configuration of the last subshell to be filled by the Aufbau principle. The colored sections of Figure 6.30 show
the three categories of elements classified by the orbitals being filled: main group, transition, and inner transition
elements. These classifications determine which orbitals are counted in the valence shell, or highest energy level
orbitals of an atom.

1. Main group elements (sometimes called representative elements) are those in which the last electron added
enters an s or a p orbital in the outermost shell, shown in blue and red in Figure 6.30. This category includes
all the nonmetallic elements, as well as many metals and the intermediate semimetallic elements. The valence
electrons for main group elements are those with the highest n level. For example, gallium (Ga, atomic number

31) has the electron configuration [Ar]4s23d104p1, which contains three valence electrons (underlined). The
completely filled d orbitals count as core, not valence, electrons.

2. Transition elements or transition metals. These are metallic elements in which the last electron added
enters a d orbital. The valence electrons (those added after the last noble gas configuration) in these elements
include the ns and (n – 1) d electrons. The official IUPAC definition of transition elements specifies those with
partially filled d orbitals. Thus, the elements with completely filled orbitals (Zn, Cd, Hg, as well as Cu, Ag,
and Au in Figure 6.30) are not technically transition elements. However, the term is frequently used to refer
to the entire d block (colored yellow in Figure 6.30), and we will adopt this usage in this textbook.

3. Inner transition elements are metallic elements in which the last electron added occupies an f orbital. They
are shown in green in Figure 6.30. The valence shells of the inner transition elements consist of the (n – 2)f,
the (n – 1)d, and the ns subshells. There are two inner transition series:

a. The lanthanide series: lanthanide (La) through lutetium (Lu)

b. The actinide series: actinide (Ac) through lawrencium (Lr)

Lanthanum and actinium, because of their similarities to the other members of the series, are included and used to
name the series, even though they are transition metals with no f electrons.

Electron Configurations of Ions

We have seen that ions are formed when atoms gain or lose electrons. A cation (positively charged ion) forms when
one or more electrons are removed from a parent atom. For main group elements, the electrons that were added last
are the first electrons removed. For transition metals and inner transition metals, however, electrons in the s orbital
are easier to remove than the d or f electrons, and so the highest ns electrons are lost, and then the (n – 1)d or (n –
2)f electrons are removed. An anion (negatively charged ion) forms when one or more electrons are added to a parent
atom. The added electrons fill in the order predicted by the Aufbau principle.

Example 6.11

Predicting Electron Configurations of Ions
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What is the electron configuration and orbital diagram of:

(a) Na+

(b) P3–

(c) Al2+

(d) Fe2+

(e) Sm3+

Solution

First, write out the electron configuration for each parent atom. We have chosen to show the full,
unabbreviated configurations to provide more practice for students who want it, but listing the core-
abbreviated electron configurations is also acceptable.

Next, determine whether an electron is gained or lost. Remember electrons are negatively charged, so ions
with a positive charge have lost an electron. For main group elements, the last orbital gains or loses the
electron. For transition metals, the last s orbital loses an electron before the d orbitals.

(a) Na: 1s22s22p63s1. Sodium cation loses one electron, so Na+: 1s22s22p63s1 = Na+: 1s22s22p6.

(b) P: 1s22s22p63s23p3. Phosphorus trianion gains three electrons, so P3−: 1s22s22p63s23p6.

(c) Al: 1s22s22p63s23p1. Aluminum dication loses two electrons Al2+: 1s22s22p63s23p1 =

Al2+: 1s22s22p63s1.

(d) Fe: 1s22s22p63s23p64s23d6. Iron(II) loses two electrons and, since it is a transition metal, they are

removed from the 4s orbital Fe2+: 1s22s22p63s23p64s23d6 = 1s22s22p63s23p63d6.

(e). Sm: 1s22s22p63s23p64s23d104p65s24d105p66s24f6. Samarium trication loses three electrons. The first

two will be lost from the 6s orbital, and the final one is removed from the 4f orbital. Sm3+:

1s22s22p63s23p64s23d104p65s24d105p66s24f6 = 1s22s22p63s23p64s23d104p65s24d105p64f5.

Check Your Learning

Which ion with a +2 charge has the electron configuration 1s22s22p63s23p63d104s24p64d5? Which ion with
a +3 charge has this configuration?

Answer: Tc2+, Ru3+

6.5 Periodic Variations in Element Properties

By the end of this section, you will be able to:

• Describe and explain the observed trends in atomic size, ionization energy, and electron affinity of

the elements

The elements in groups (vertical columns) of the periodic table exhibit similar chemical behavior. This similarity
occurs because the members of a group have the same number and distribution of electrons in their valence shells.
However, there are also other patterns in chemical properties on the periodic table. For example, as we move down
a group, the metallic character of the atoms increases. Oxygen, at the top of group 16 (6A), is a colorless gas; in the

324 Chapter 6 Electronic Structure and Periodic Properties of Elements

This content is available for free at http://cnx.org/content/col11760/1.9



middle of the group, selenium is a semiconducting solid; and, toward the bottom, polonium is a silver-grey solid that
conducts electricity.

As we go across a period from left to right, we add a proton to the nucleus and an electron to the valence shell with
each successive element. As we go down the elements in a group, the number of electrons in the valence shell remains
constant, but the principal quantum number increases by one each time. An understanding of the electronic structure
of the elements allows us to examine some of the properties that govern their chemical behavior. These properties
vary periodically as the electronic structure of the elements changes. They are (1) size (radius) of atoms and ions, (2)
ionization energies, and (3) electron affinities.

Explore visualizations (http://openstaxcollege.org/l/16pertrends) of the periodic
trends discussed in this section (and many more trends). With just a few clicks, you
can create three-dimensional versions of the periodic table showing atomic size or
graphs of ionization energies from all measured elements.

Variation in Covalent Radius

The quantum mechanical picture makes it difficult to establish a definite size of an atom. However, there are several
practical ways to define the radius of atoms and, thus, to determine their relative sizes that give roughly similar
values. We will use the covalent radius (Figure 6.31), which is defined as one-half the distance between the
nuclei of two identical atoms when they are joined by a covalent bond (this measurement is possible because atoms
within molecules still retain much of their atomic identity). We know that as we scan down a group, the principal
quantum number, n, increases by one for each element. Thus, the electrons are being added to a region of space that
is increasingly distant from the nucleus. Consequently, the size of the atom (and its covalent radius) must increase as
we increase the distance of the outermost electrons from the nucleus. This trend is illustrated for the covalent radii of
the halogens in Table 6.2 and Figure 6.31. The trends for the entire periodic table can be seen in Figure 6.31.

Covalent Radii of the Halogen Group Elements

Atom Covalent radius (pm) Nuclear charge

F 64 +9

Cl 99 +17

Br 114 +35

I 133 +53

At 148 +85

Table 6.2

Link to Learning
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Figure 6.31 (a) The radius of an atom is defined as one-half the distance between the nuclei in a molecule
consisting of two identical atoms joined by a covalent bond. The atomic radius for the halogens increases down the
group as n increases. (b) Covalent radii of the elements are shown to scale. The general trend is that radii increase
down a group and decrease across a period.
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Figure 6.32 Within each period, the trend in atomic radius decreases as Z increases; for example, from K to Kr.
Within each group (e.g., the alkali metals shown in purple), the trend is that atomic radius increases as Z increases.

As shown in Figure 6.32, as we move across a period from left to right, we generally find that each element has
a smaller covalent radius than the element preceding it. This might seem counterintuitive because it implies that
atoms with more electrons have a smaller atomic radius. This can be explained with the concept of effective nuclear
charge, Zeff. This is the pull exerted on a specific electron by the nucleus, taking into account any electron–electron

repulsions. For hydrogen, there is only one electron and so the nuclear charge (Z) and the effective nuclear charge
(Zeff) are equal. For all other atoms, the inner electrons partially shield the outer electrons from the pull of the nucleus,

and thus:

Zeff = Z − shielding

Shielding is determined by the probability of another electron being between the electron of interest and the nucleus,
as well as by the electron–electron repulsions the electron of interest encounters. Core electrons are adept at shielding,
while electrons in the same valence shell do not block the nuclear attraction experienced by each other as efficiently.
Thus, each time we move from one element to the next across a period, Z increases by one, but the shielding increases
only slightly. Thus, Zeff increases as we move from left to right across a period. The stronger pull (higher effective

nuclear charge) experienced by electrons on the right side of the periodic table draws them closer to the nucleus,
making the covalent radii smaller.

Thus, as we would expect, the outermost or valence electrons are easiest to remove because they have the highest
energies, are shielded more, and are farthest from the nucleus. As a general rule, when the representative elements
form cations, they do so by the loss of the ns or np electrons that were added last in the Aufbau process. The transition
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elements, on the other hand, lose the ns electrons before they begin to lose the (n – 1)d electrons, even though the ns
electrons are added first, according to the Aufbau principle.

Example 6.12

Sorting Atomic Radii

Predict the order of increasing covalent radius for Ge, Fl, Br, Kr.

Solution

Radius increases as we move down a group, so Ge < Fl (Note: Fl is the symbol for flerovium, element 114,
NOT fluorine). Radius decreases as we move across a period, so Kr < Br < Ge. Putting the trends together,
we obtain Kr < Br < Ge < Fl.

Check Your Learning

Give an example of an atom whose size is smaller than fluorine.

Answer: Ne or He

Variation in Ionic Radii

Ionic radius is the measure used to describe the size of an ion. A cation always has fewer electrons and the same
number of protons as the parent atom; it is smaller than the atom from which it is derived (Figure 6.33). For

example, the covalent radius of an aluminum atom (1s22s22p63s23p1) is 118 pm, whereas the ionic radius of an Al3+

(1s22s22p6) is 68 pm. As electrons are removed from the outer valence shell, the remaining core electrons occupying
smaller shells experience a greater effective nuclear charge Zeff (as discussed) and are drawn even closer to the

nucleus.

Figure 6.33 The radius for a cation is smaller than the parent atom (Al), due to the lost electrons; the radius for an
anion is larger than the parent (S), due to the gained electrons.

Cations with larger charges are smaller than cations with smaller charges (e.g., V2+ has an ionic radius of 79 pm, while

that of V3+ is 64 pm). Proceeding down the groups of the periodic table, we find that cations of successive elements
with the same charge generally have larger radii, corresponding to an increase in the principal quantum number, n.

An anion (negative ion) is formed by the addition of one or more electrons to the valence shell of an atom. This results
in a greater repulsion among the electrons and a decrease in Zeff per electron. Both effects (the increased number of

electrons and the decreased Zeff) cause the radius of an anion to be larger than that of the parent atom (Figure 6.33).

For example, a sulfur atom ([Ne]3s23p4) has a covalent radius of 104 pm, whereas the ionic radius of the sulfide anion

([Ne]3s23p6) is 170 pm. For consecutive elements proceeding down any group, anions have larger principal quantum
numbers and, thus, larger radii.

Atoms and ions that have the same electron configuration are said to be isoelectronic. Examples of isoelectronic

species are N3–, O2–, F–, Ne, Na+, Mg2+, and Al3+ (1s22s22p6). Another isoelectronic series is P3–, S2–, Cl–, Ar, K+,

Ca2+, and Sc3+ ([Ne]3s23p6). For atoms or ions that are isoelectronic, the number of protons determines the size. The
greater the nuclear charge, the smaller the radius in a series of isoelectronic ions and atoms.
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Variation in Ionization Energies

The amount of energy required to remove the most loosely bound electron from a gaseous atom in its ground state is
called its first ionization energy (IE1). The first ionization energy for an element, X, is the energy required to form a

cation with +1 charge:

X(g) ⟶ X+(g) + e− IE1

The energy required to remove the second most loosely bound electron is called the second ionization energy (IE2).

X+(g) ⟶ X2+(g) + e− IE2

The energy required to remove the third electron is the third ionization energy, and so on. Energy is always required to
remove electrons from atoms or ions, so ionization processes are endothermic and IE values are always positive. For
larger atoms, the most loosely bound electron is located farther from the nucleus and so is easier to remove. Thus, as
size (atomic radius) increases, the ionization energy should decrease. Relating this logic to what we have just learned
about radii, we would expect first ionization energies to decrease down a group and to increase across a period.

Figure 6.34 graphs the relationship between the first ionization energy and the atomic number of several elements.
The values of first ionization energy for the elements are given in Figure 6.35. Within a period, the IE1 generally

increases with increasing Z. Down a group, the IE1 value generally decreases with increasing Z. There are some

systematic deviations from this trend, however. Note that the ionization energy of boron (atomic number 5) is less
than that of beryllium (atomic number 4) even though the nuclear charge of boron is greater by one proton. This can be
explained because the energy of the subshells increases as l increases, due to penetration and shielding (as discussed
previously in this chapter). Within any one shell, the s electrons are lower in energy than the p electrons. This means
that an s electron is harder to remove from an atom than a p electron in the same shell. The electron removed during

the ionization of beryllium ([He]2s2) is an s electron, whereas the electron removed during the ionization of boron

([He]2s22p1) is a p electron; this results in a lower first ionization energy for boron, even though its nuclear charge
is greater by one proton. Thus, we see a small deviation from the predicted trend occurring each time a new subshell
begins.
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Figure 6.34 The first ionization energy of the elements in the first five periods are plotted against their atomic
number.

Figure 6.35 This version of the periodic table shows the first ionization energy of (IE1), in kJ/mol, of selected
elements.
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Another deviation occurs as orbitals become more than one-half filled. The first ionization energy for oxygen is
slightly less than that for nitrogen, despite the trend in increasing IE1 values across a period. Looking at the orbital

diagram of oxygen, we can see that removing one electron will eliminate the electron–electron repulsion caused
by pairing the electrons in the 2p orbital and will result in a half-filled orbital (which is energetically favorable).
Analogous changes occur in succeeding periods (note the dip for sulfur after phosphorus in Figure 6.35).

Removing an electron from a cation is more difficult than removing an electron from a neutral atom because of the
greater electrostatic attraction to the cation. Likewise, removing an electron from a cation with a higher positive
charge is more difficult than removing an electron from an ion with a lower charge. Thus, successive ionization
energies for one element always increase. As seen in Table 6.3, there is a large increase in the ionization energies
(color change) for each element. This jump corresponds to removal of the core electrons, which are harder to remove
than the valence electrons. For example, Sc and Ga both have three valence electrons, so the rapid increase in
ionization energy occurs after the third ionization.

Successive Ionization Energies for Selected Elements (kJ/mol)

Element IE1 IE2 IE3 IE4 IE5 IE6 IE7

K 418.8 3051.8 4419.6 5876.9 7975.5 9590.6 11343

Ca 589.8 1145.4 4912.4 6490.6 8153.0 10495.7 12272.9

Sc 633.1 1235.0 2388.7 7090.6 8842.9 10679.0 13315.0

Ga 578.8 1979.4 2964.6 6180 8298.7 10873.9 13594.8

Ge 762.2 1537.5 3302.1 4410.6 9021.4 Not available Not available

As 944.5 1793.6 2735.5 4836.8 6042.9 12311.5 Not available

Table 6.3

Example 6.13

Ranking Ionization Energies

Predict the order of increasing energy for the following processes: IE1 for Al, IE1 for Tl, IE2 for Na, IE3 for

Al.

Solution

Removing the 6p1 electron from Tl is easier than removing the 3p1 electron from Al because the higher
n orbital is farther from the nucleus, so IE1(Tl) < IE1(Al). Ionizing the third electron from

Al (Al2+ ⟶ Al3+ + e−) requires more energy because the cation Al2+ exerts a stronger pull on the

electron than the neutral Al atom, so IE1(Al) < IE3(Al). The second ionization energy for sodium removes

a core electron, which is a much higher energy process than removing valence electrons. Putting this all
together, we obtain: IE1(Tl) < IE1(Al) < IE3(Al) < IE2(Na).

Check Your Learning
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Which has the lowest value for IE1: O, Po, Pb, or Ba?

Answer: Ba

Variation in Electron Affinities

The electron affinity [EA] is the energy change for the process of adding an electron to a gaseous atom to form an
anion (negative ion).

X(g) + e− ⟶ X−(g) EA1

This process can be either endothermic or exothermic, depending on the element. The EA of some of the elements is
given in Figure 6.36. You can see that many of these elements have negative values of EA, which means that energy
is released when the gaseous atom accepts an electron. However, for some elements, energy is required for the atom
to become negatively charged and the value of their EA is positive. Just as with ionization energy, subsequent EA
values are associated with forming ions with more charge. The second EA is the energy associated with adding an
electron to an anion to form a –2 ion, and so on.

As we might predict, it becomes easier to add an electron across a series of atoms as the effective nuclear charge of
the atoms increases. We find, as we go from left to right across a period, EAs tend to become more negative. The
exceptions found among the elements of group 2 (2A), group 15 (5A), and group 18 (8A) can be understood based
on the electronic structure of these groups. The noble gases, group 18 (8A), have a completely filled shell and the
incoming electron must be added to a higher n level, which is more difficult to do. Group 2 (2A) has a filled ns
subshell, and so the next electron added goes into the higher energy np, so, again, the observed EA value is not as the
trend would predict. Finally, group 15 (5A) has a half-filled np subshell and the next electron must be paired with an
existing np electron. In all of these cases, the initial relative stability of the electron configuration disrupts the trend
in EA.

We also might expect the atom at the top of each group to have the largest EA; their first ionization potentials
suggest that these atoms have the largest effective nuclear charges. However, as we move down a group, we see that
the second element in the group most often has the greatest EA. The reduction of the EA of the first member can
be attributed to the small size of the n = 2 shell and the resulting large electron–electron repulsions. For example,
chlorine, with an EA value of –348 kJ/mol, has the highest value of any element in the periodic table. The EA of

fluorine is –322 kJ/mol. When we add an electron to a fluorine atom to form a fluoride anion (F–), we add an electron
to the n = 2 shell. The electron is attracted to the nucleus, but there is also significant repulsion from the other
electrons already present in this small valence shell. The chlorine atom has the same electron configuration in the
valence shell, but because the entering electron is going into the n = 3 shell, it occupies a considerably larger region of
space and the electron–electron repulsions are reduced. The entering electron does not experience as much repulsion
and the chlorine atom accepts an additional electron more readily.
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Figure 6.36 This version of the periodic table displays the electron affinity values (in kJ/mol) for selected elements.

The properties discussed in this section (size of atoms and ions, effective nuclear charge, ionization energies, and
electron affinities) are central to understanding chemical reactivity. For example, because fluorine has an energetically
favorable EA and a large energy barrier to ionization (IE), it is much easier to form fluorine anions than cations.
Metallic properties including conductivity and malleability (the ability to be formed into sheets) depend on having
electrons that can be removed easily. Thus, metallic character increases as we move down a group and decreases
across a period in the same trend observed for atomic size because it is easier to remove an electron that is farther
away from the nucleus.
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amplitude

angular momentum quantum number (l)

atomic orbital

Aufbau principle

blackbody

Bohr’s model of the hydrogen atom

continuous spectrum

core electron

covalent radius

d orbital

effective nuclear charge

electromagnetic radiation

electromagnetic spectrum

electron affinity

electron configuration

electron density

excited state

f orbital

Key Terms

extent of the displacement caused by a wave (for sinusoidal waves, it is one-half the difference from the
peak height to the trough depth, and the intensity is proportional to the square of the amplitude)

quantum number distinguishing the different shapes of orbitals; it is
also a measure of the orbital angular momentum

mathematical function that describes the behavior of an electron in an atom (also called the
wavefunction), it can be used to find the probability of locating an electron in a specific region around the
nucleus, as well as other dynamical variables

procedure in which the electron configuration of the elements is determined by “building” them
in order of atomic numbers, adding one proton to the nucleus and one electron to the proper subshell at a time

idealized perfect absorber of all incident electromagnetic radiation; such bodies emit electromagnetic
radiation in characteristic continuous spectra called blackbody radiation

structural model in which an electron moves around the nucleus only in
circular orbits, each with a specific allowed radius; the orbiting electron does not normally emit electromagnetic
radiation, but does so when changing from one orbit to another.

electromagnetic radiation given off in an unbroken series of wavelengths (e.g., white light
from the sun)

electron in an atom that occupies the orbitals of the inner shells

one-half the distance between the nuclei of two identical atoms when they are joined by a covalent
bond

region of space with high electron density that is either four lobed or contains a dumbbell and torus shape;
describes orbitals with l = 2. An electron in this orbital is called a d electron

charge that leads to the Coulomb force exerted by the nucleus on an electron, calculated
as the nuclear charge minus shielding

energy transmitted by waves that have an electric-field component and a magnetic-field
component

range of energies that electromagnetic radiation can comprise, including radio,
microwaves, infrared, visible, ultraviolet, X-rays, and gamma rays; since electromagnetic radiation energy is
proportional to the frequency and inversely proportional to the wavelength, the spectrum can also be specified by
ranges of frequencies or wavelengths

energy required to add an electron to a gaseous atom to form an anion

electronic structure of an atom in its ground state given as a listing of the orbitals occupied
by the electrons

a measure of the probability of locating an electron in a particular region of space, it is equal to the
squared absolute value of the wave function ψ

state having an energy greater than the ground-state energy

multilobed region of space with high electron density, describes orbitals with l = 3. An electron in this
orbital is called an f electron
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frequency (ν)

ground state

Heisenberg uncertainty principle

hertz (Hz)

Hund’s rule

intensity

interference pattern

ionization energy

isoelectronic

line spectrum

magnetic quantum number (ml)

node

orbital diagram

p orbital

Pauli exclusion principle

photon

principal quantum number (n)

quantization

quantum mechanics

quantum number

number of wave cycles (peaks or troughs) that pass a specified point in space per unit time

state in which the electrons in an atom, ion, or molecule have the lowest energy possible

rule stating that it is impossible to exactly determine both certain conjugate
dynamical properties such as the momentum and the position of a particle at the same time. The uncertainty
principle is a consequence of quantum particles exhibiting wave–particle duality

the unit of frequency, which is the number of cycles per second, s−1

every orbital in a subshell is singly occupied with one electron before any one orbital is doubly
occupied, and all electrons in singly occupied orbitals have the same spin

property of wave-propagated energy related to the amplitude of the wave, such as brightness of light or
loudness of sound

pattern typically consisting of alternating bright and dark fringes; it results from constructive
and destructive interference of waves

energy required to remove an electron from a gaseous atom or ion. The associated number (e.g.,

second ionization energy) corresponds to the charge of the ion produced (X2+)

group of ions or atoms that have identical electron configurations

electromagnetic radiation emitted at discrete wavelengths by a specific atom (or atoms) in an excited
state

quantum number signifying the orientation of an atomic orbital around the
nucleus; orbitals having different values of ml but the same subshell value of l

have the same energy (are degenerate), but this degeneracy can be removed by application of an external
magnetic field

any point of a standing wave with zero amplitude

pictorial representation of the electron configuration showing each orbital as a box and each
electron as an arrow

dumbbell-shaped region of space with high electron density, describes orbitals with l = 1. An electron in
this orbital is called a p electron

specifies that no two electrons in an atom can have the same value for all four quantum
numbers

smallest possible packet of electromagnetic radiation, a particle of light

quantum number specifying the shell an electron occupies in an atom

occurring only in specific discrete values, not continuous

field of study that includes quantization of energy, wave-particle duality, and the Heisenberg
uncertainty principle to describe matter

integer number having only specific allowed values and used to characterize the arrangement of
electrons in an atom

Chapter 6 Electronic Structure and Periodic Properties of Elements 335



s orbital

shell

spin quantum number (ms)

standing wave

subshell

valence electrons

valence shell

wave

wave-particle duality

wavefunction (ψ)

wavelength (λ)

spherical region of space with high electron density, describes orbitals with l = 0. An electron in this
orbital is called an s electron

set of orbitals with the same principal quantum number, n

number specifying the electron spin direction, either + 1
2 or − 1

2

(also, stationary wave) localized wave phenomenon characterized by discrete wavelengths
determined by the boundary conditions used to generate the waves; standing waves are inherently quantized

set of orbitals in an atom with the same values of n and l

electrons in the outermost or valence shell (highest value of n) of a ground-state atom; determine
how an element reacts

outermost shell of electrons in a ground-state atom; for main group elements, the orbitals with the
highest n level (s and p subshells) are in the valence shell, while for transition metals, the highest energy s and d
subshells make up the valence shell and for inner transition elements, the highest s, d, and f subshells are included

oscillation that can transport energy from one point to another in space

term used to describe the fact that elementary particles including matter exhibit properties of
both particles (including localized position, momentum) and waves (including nonlocalization, wavelength,
frequency)

mathematical description of an atomic orbital that describes the shape of the orbital; it can be
used to calculate the probability of finding the electron at any given location in the orbital, as well as dynamical
variables such as the energy and the angular momentum

distance between two consecutive peaks or troughs in a wave

Key Equations

• c = λν

• E = hν = hc
λ , where h = 6.626 × 10−34 J s

• 1
λ = R∞

⎛

⎝
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⎞
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⎟

• En = − kZ 2

n2 , n = 1, 2, 3, …

• ΔE = kZ 2
⎛
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• r = n2

Z a0

Summary
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6.1 Electromagnetic Energy
Light and other forms of electromagnetic radiation move through a vacuum with a constant speed, c, of 2.998 ×

108 m s−1. This radiation shows wavelike behavior, which can be characterized by a frequency, ν, and a wavelength,
λ, such that c = λν. Light is an example of a travelling wave. Other important wave phenomena include standing
waves, periodic oscillations, and vibrations. Standing waves exhibit quantization, since their wavelengths are limited
to discrete integer multiples of some characteristic lengths. Electromagnetic radiation that passes through two closely
spaced narrow slits having dimensions roughly similar to the wavelength will show an interference pattern that
is a result of constructive and destructive interference of the waves. Electromagnetic radiation also demonstrates
properties of particles called photons. The energy of a photon is related to the frequency (or alternatively, the

wavelength) of the radiation as E = hν (or E = hc
λ ), where h is Planck's constant. That light demonstrates both

wavelike and particle-like behavior is known as wave-particle duality. All forms of electromagnetic radiation share
these properties, although various forms including X-rays, visible light, microwaves, and radio waves interact
differently with matter and have very different practical applications. Electromagnetic radiation can be generated by
exciting matter to higher energies, such as by heating it. The emitted light can be either continuous (incandescent
sources like the sun) or discrete (from specific types of excited atoms). Continuous spectra often have distributions
that can be approximated as blackbody radiation at some appropriate temperature. The line spectrum of hydrogen
can be obtained by passing the light from an electrified tube of hydrogen gas through a prism. This line spectrum
was simple enough that an empirical formula called the Rydberg formula could be derived from the spectrum. Three
historically important paradoxes from the late 19th and early 20th centuries that could not be explained within
the existing framework of classical mechanics and classical electromagnetism were the blackbody problem, the
photoelectric effect, and the discrete spectra of atoms. The resolution of these paradoxes ultimately led to quantum
theories that superseded the classical theories.

6.2 The Bohr Model
Bohr incorporated Planck’s and Einstein’s quantization ideas into a model of the hydrogen atom that resolved the
paradox of atom stability and discrete spectra. The Bohr model of the hydrogen atom explains the connection between
the quantization of photons and the quantized emission from atoms. Bohr described the hydrogen atom in terms of
an electron moving in a circular orbit about a nucleus. He postulated that the electron was restricted to certain orbits
characterized by discrete energies. Transitions between these allowed orbits result in the absorption or emission of
photons. When an electron moves from a higher-energy orbit to a more stable one, energy is emitted in the form of a
photon. To move an electron from a stable orbit to a more excited one, a photon of energy must be absorbed. Using
the Bohr model, we can calculate the energy of an electron and the radius of its orbit in any one-electron system.

6.3 Development of Quantum Theory
Macroscopic objects act as particles. Microscopic objects (such as electrons) have properties of both a particle
and a wave. Their exact trajectories cannot be determined. The quantum mechanical model of atoms describes the
three-dimensional position of the electron in a probabilistic manner according to a mathematical function called
a wavefunction, often denoted as ψ. Atomic wavefunctions are also called orbitals. The squared magnitude of the
wavefunction describes the distribution of the probability of finding the electron in a particular region in space.
Therefore, atomic orbitals describe the areas in an atom where electrons are most likely to be found.

An atomic orbital is characterized by three quantum numbers. The principal quantum number, n, can be any positive
integer. The general region for value of energy of the orbital and the average distance of an electron from the nucleus
are related to n. Orbitals having the same value of n are said to be in the same shell. The angular momentum quantum
number, l, can have any integer value from 0 to n – 1. This quantum number describes the shape or type of the orbital.
Orbitals with the same principle quantum number and the same l value belong to the same subshell. The magnetic
quantum number, ml, with 2l + 1 values ranging from –l to +l, describes the orientation of the orbital in space. In

addition, each electron has a spin quantum number, ms, that can be equal to ± 1
2. No two electrons in the same atom

can have the same set of values for all the four quantum numbers.
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6.4 Electronic Structure of Atoms (Electron Configurations)
The relative energy of the subshells determine the order in which atomic orbitals are filled (1s, 2s, 2p, 3s, 3p, 4s,
3d, 4p, and so on). Electron configurations and orbital diagrams can be determined by applying the Pauli exclusion
principle (no two electrons can have the same set of four quantum numbers) and Hund’s rule (whenever possible,
electrons retain unpaired spins in degenerate orbitals).

Electrons in the outermost orbitals, called valence electrons, are responsible for most of the chemical behavior of
elements. In the periodic table, elements with analogous valence electron configurations usually occur within the
same group. There are some exceptions to the predicted filling order, particularly when half-filled or completely filled
orbitals can be formed. The periodic table can be divided into three categories based on the orbital in which the last
electron to be added is placed: main group elements (s and p orbitals), transition elements (d orbitals), and inner
transition elements (f orbitals).

6.5 Periodic Variations in Element Properties
Electron configurations allow us to understand many periodic trends. Covalent radius increases as we move down a
group because the n level (orbital size) increases. Covalent radius mostly decreases as we move left to right across
a period because the effective nuclear charge experienced by the electrons increases, and the electrons are pulled
in tighter to the nucleus. Anionic radii are larger than the parent atom, while cationic radii are smaller, because the
number of valence electrons has changed while the nuclear charge has remained constant. Ionization energy (the
energy associated with forming a cation) decreases down a group and mostly increases across a period because it
is easier to remove an electron from a larger, higher energy orbital. Electron affinity (the energy associated with
forming an anion) is more favorable (exothermic) when electrons are placed into lower energy orbitals, closer to the
nucleus. Therefore, electron affinity becomes increasingly negative as we move left to right across the periodic table
and decreases as we move down a group. For both IE and electron affinity data, there are exceptions to the trends
when dealing with completely filled or half-filled subshells.

Exercises

6.1 Electromagnetic Energy
1. The light produced by a red neon sign is due to the emission of light by excited neon atoms. Qualitatively
describe the spectrum produced by passing light from a neon lamp through a prism.

2. An FM radio station found at 103.1 on the FM dial broadcasts at a frequency of 1.031 × 108 s−1 (103.1 MHz).

What is the wavelength of these radio waves in meters?

3. FM-95, an FM radio station, broadcasts at a frequency of 9.51 × 107 s−1 (95.1 MHz). What is the wavelength

of these radio waves in meters?

4. A bright violet line occurs at 435.8 nm in the emission spectrum of mercury vapor. What amount of energy, in
joules, must be released by an electron in a mercury atom to produce a photon of this light?

5. Light with a wavelength of 614.5 nm looks orange. What is the energy, in joules, per photon of this orange light?

What is the energy in eV (1 eV = 1.602 × 10−19 J)?

6. Heated lithium atoms emit photons of light with an energy of 2.961 × 10−19 J. Calculate the frequency and

wavelength of one of these photons. What is the total energy in 1 mole of these photons? What is the color of the
emitted light?

7. A photon of light produced by a surgical laser has an energy of 3.027 × 10−19 J. Calculate the frequency and

wavelength of the photon. What is the total energy in 1 mole of photons? What is the color of the emitted light?

8. When rubidium ions are heated to a high temperature, two lines are observed in its line spectrum at wavelengths

(a) 7.9 × 10−7 m and (b) 4.2 × 10−7 m. What are the frequencies of the two lines? What color do we see when we

heat a rubidium compound?
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9. The emission spectrum of cesium contains two lines whose frequencies are (a) 3.45 × 1014 Hz and (b) 6.53 ×

1014 Hz. What are the wavelengths and energies per photon of the two lines? What color are the lines?

10. Photons of infrared radiation are responsible for much of the warmth we feel when holding our hands before a

fire. These photons will also warm other objects. How many infrared photons with a wavelength of 1.5 × 10−6 m

must be absorbed by the water to warm a cup of water (175 g) from 25.0 °C to 40 °C?

11. One of the radiographic devices used in a dentist's office emits an X-ray of wavelength 2.090 × 10−11 m. What

is the energy, in joules, and frequency of this X-ray?

12. The eyes of certain reptiles pass a single visual signal to the brain when the visual receptors are struck by

photons of a wavelength of 850 nm. If a total energy of 3.15 × 10−14 J is required to trip the signal, what is the

minimum number of photons that must strike the receptor?

13. RGB color television and computer displays use cathode ray tubes that produce colors by mixing red, green,
and blue light. If we look at the screen with a magnifying glass, we can see individual dots turn on and off as the
colors change. Using a spectrum of visible light, determine the approximate wavelength of each of these colors.
What is the frequency and energy of a photon of each of these colors?

14. Answer the following questions about a Blu-ray laser:

(a) The laser on a Blu-ray player has a wavelength of 405 nm. In what region of the electromagnetic spectrum is this
radiation? What is its frequency?

(b) A Blu-ray laser has a power of 5 milliwatts (1 watt = 1 J s−1). How many photons of light are produced by the
laser in 1 hour?

(c) The ideal resolution of a player using a laser (such as a Blu-ray player), which determines how close together
data can be stored on a compact disk, is determined using the following formula: Resolution = 0.60(λ/NA), where λ
is the wavelength of the laser and NA is the numerical aperture. Numerical aperture is a measure of the size of the
spot of light on the disk; the larger the NA, the smaller the spot. In a typical Blu-ray system, NA = 0.95. If the
405-nm laser is used in a Blu-ray player, what is the closest that information can be stored on a Blu-ray disk?

(d) The data density of a Blu-ray disk using a 405-nm laser is 1.5 × 107 bits mm−2. Disks have an outside diameter

of 120 mm and a hole of 15-mm diameter. How many data bits can be contained on the disk? If a Blu-ray disk can
hold 9,400,000 pages of text, how many data bits are needed for a typed page? (Hint: Determine the area of the disk

that is available to hold data. The area inside a circle is given by A = πr2, where the radius r is one-half of the
diameter.)

15. What is the threshold frequency for sodium metal if a photon with frequency 6.66 × 1014 s−1 ejects a photon

with 7.74 × 10−20 J kinetic energy? Will the photoelectric effect be observed if sodium is exposed to orange light?

6.2 The Bohr Model
16. Why is the electron in a Bohr hydrogen atom bound less tightly when it has a quantum number of 3 than when
it has a quantum number of 1?

17. What does it mean to say that the energy of the electrons in an atom is quantized?

18. Using the Bohr model, determine the energy, in joules, necessary to ionize a ground-state hydrogen atom. Show
your calculations.

19. The electron volt (eV) is a convenient unit of energy for expressing atomic-scale energies. It is the amount of

energy that an electron gains when subjected to a potential of 1 volt; 1 eV = 1.602 × 10–19 J. Using the Bohr

model, determine the energy, in electron volts, of the photon produced when an electron in a hydrogen atom moves
from the orbit with n = 5 to the orbit with n = 2. Show your calculations.

20. Using the Bohr model, determine the lowest possible energy, in joules, for the electron in the Li2+ ion.
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21. Using the Bohr model, determine the lowest possible energy for the electron in the He+ ion.

22. Using the Bohr model, determine the energy of an electron with n = 6 in a hydrogen atom.

23. Using the Bohr model, determine the energy of an electron with n = 8 in a hydrogen atom.

24. How far from the nucleus in angstroms (1 angstrom = 1 × 10–10 m) is the electron in a hydrogen atom if it

has an energy of –8.72 × 10–20 J?

25. What is the radius, in angstroms, of the orbital of an electron with n = 8 in a hydrogen atom?

26. Using the Bohr model, determine the energy in joules of the photon produced when an electron in a He+ ion
moves from the orbit with n = 5 to the orbit with n = 2.

27. Using the Bohr model, determine the energy in joules of the photon produced when an electron in a Li2+ ion
moves from the orbit with n = 2 to the orbit with n = 1.

28. Consider a large number of hydrogen atoms with electrons randomly distributed in the n = 1, 2, 3, and 4 orbits.

(a) How many different wavelengths of light are emitted by these atoms as the electrons fall into lower-energy
orbitals?

(b) Calculate the lowest and highest energies of light produced by the transitions described in part (a).

(c) Calculate the frequencies and wavelengths of the light produced by the transitions described in part (b).

29. How are the Bohr model and the Rutherford model of the atom similar? How are they different?

30. The spectra of hydrogen and of calcium are shown in Figure 6.13. What causes the lines in these spectra?
Why are the colors of the lines different? Suggest a reason for the observation that the spectrum of calcium is more
complicated than the spectrum of hydrogen.

6.3 Development of Quantum Theory
31. How are the Bohr model and the quantum mechanical model of the hydrogen atom similar? How are they
different?

32. What are the allowed values for each of the four quantum numbers: n, l, ml, and ms?

33. Describe the properties of an electron associated with each of the following four quantum numbers: n, l, ml, and

ms.

34. Answer the following questions:

(a) Without using quantum numbers, describe the differences between the shells, subshells, and orbitals of an atom.

(b) How do the quantum numbers of the shells, subshells, and orbitals of an atom differ?

35. Identify the subshell in which electrons with the following quantum numbers are found:

(a) n = 2, l = 1

(b) n = 4, l = 2

(c) n = 6, l = 0

36. Which of the subshells described in Question 5 contain degenerate orbitals? How many degenerate orbitals are
in each?

37. Identify the subshell in which electrons with the following quantum numbers are found:

(a) n = 3, l = 2

(b) n = 1, l = 0

(c) n = 4, l = 3

38. Which of the subshells described in Question 7 contain degenerate orbitals? How many degenerate orbitals are
in each?

39. Sketch the boundary surface of a dx2 −y2 and a py orbital. Be sure to show and label the axes.
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40. Sketch the px and dxz orbitals. Be sure to show and label the coordinates.

41. Consider the orbitals shown here in outline.

(a) What is the maximum number of electrons contained in an orbital of type (x)? Of type (y)? Of type (z)?

(b) How many orbitals of type (x) are found in a shell with n = 2? How many of type (y)? How many of type (z)?

(c) Write a set of quantum numbers for an electron in an orbital of type (x) in a shell with n = 4. Of an orbital of type
(y) in a shell with n = 2. Of an orbital of type (z) in a shell with n = 3.

(d) What is the smallest possible n value for an orbital of type (x)? Of type (y)? Of type (z)?

(e) What are the possible l and ml values for an orbital of type (x)? Of type (y)? Of type (z)?

42. State the Heisenberg uncertainty principle. Describe briefly what the principle implies.

43. How many electrons could be held in the second shell of an atom if the spin quantum number ms could have

three values instead of just two? (Hint: Consider the Pauli exclusion principle.)

44. Which of the following equations describe particle-like behavior? Which describe wavelike behavior? Do any
involve both types of behavior? Describe the reasons for your choices.

(a) c = λν

(b) E = mν2

2

(c) r = n2 a0
Z

(d) E = hν

(e) λ = h
mν

45. Write a set of quantum numbers for each of the electrons with an n of 4 in a Se atom.

6.4 Electronic Structure of Atoms (Electron Configurations)
46. Read the labels of several commercial products and identify monatomic ions of at least four transition elements
contained in the products. Write the complete electron configurations of these cations.

47. Read the labels of several commercial products and identify monatomic ions of at least six main group
elements contained in the products. Write the complete electron configurations of these cations and anions.

48. Using complete subshell notation (not abbreviations, 1s22s22p6, and so forth), predict the electron
configuration of each of the following atoms:

(a) C

(b) P

(c) V

(d) Sb

(e) Sm

49. Using complete subshell notation (1s22s22p6, and so forth), predict the electron configuration of each of the
following atoms:
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(a) N

(b) Si

(c) Fe

(d) Te

(e) Tb

50. Is 1s22s22p6 the symbol for a macroscopic property or a microscopic property of an element? Explain your
answer.

51. What additional information do we need to answer the question “Which ion has the electron configuration

1s22s22p63s23p6”?

52. Draw the orbital diagram for the valence shell of each of the following atoms:

(a) C

(b) P

(c) V

(d) Sb

(e) Ru

53. Use an orbital diagram to describe the electron configuration of the valence shell of each of the following
atoms:

(a) N

(b) Si

(c) Fe

(d) Te

(e) Mo

54. Using complete subshell notation (1s22s22p6, and so forth), predict the electron configurations of the following
ions.

(a) N3–

(b) Ca2+

(c) S–

(d) Cs2+

(e) Cr2+

(f) Gd3+

55. Which atom has the electron configuration 1s22s22p63s23p64s23d104p65s24d2?

56. Which atom has the electron configuration 1s22s22p63s23p63d74s2?

57. Which ion with a +1 charge has the electron configuration 1s22s22p63s23p63d104s24p6? Which ion with a –2
charge has this configuration?

58. Which of the following atoms contains only three valence electrons: Li, B, N, F, Ne?

59. Which of the following has two unpaired electrons?

(a) Mg

342 Chapter 6 Electronic Structure and Periodic Properties of Elements

This content is available for free at http://cnx.org/content/col11760/1.9



(b) Si

(c) S

(d) Both Mg and S

(e) Both Si and S.

60. Which atom would be expected to have a half-filled 6p subshell?

61. Which atom would be expected to have a half-filled 4s subshell?

62. In one area of Australia, the cattle did not thrive despite the presence of suitable forage. An investigation

showed the cause to be the absence of sufficient cobalt in the soil. Cobalt forms cations in two oxidation states, Co2+

and Co3+. Write the electron structure of the two cations.

63. Thallium was used as a poison in the Agatha Christie mystery story “The Pale Horse.” Thallium has two
possible cationic forms, +1 and +3. The +1 compounds are the more stable. Write the electron structure of the +1
cation of thallium.

64. Write the electron configurations for the following atoms or ions:

(a) B3+

(b) O–

(c) Cl3+

(d) Ca2+

(e) Ti

65. Cobalt–60 and iodine–131 are radioactive isotopes commonly used in nuclear medicine. How many protons,
neutrons, and electrons are in atoms of these isotopes? Write the complete electron configuration for each isotope.

66. Write a set of quantum numbers for each of the electrons with an n of 3 in a Sc atom.

6.5 Periodic Variations in Element Properties
67. Based on their positions in the periodic table, predict which has the smallest atomic radius: Mg, Sr, Si, Cl, I.

68. Based on their positions in the periodic table, predict which has the largest atomic radius: Li, Rb, N, F, I.

69. Based on their positions in the periodic table, predict which has the largest first ionization energy: Mg, Ba, B,
O, Te.

70. Based on their positions in the periodic table, predict which has the smallest first ionization energy: Li, Cs, N,
F, I.

71. Based on their positions in the periodic table, rank the following atoms in order of increasing first ionization
energy: F, Li, N, Rb

72. Based on their positions in the periodic table, rank the following atoms or compounds in order of increasing
first ionization energy: Mg, O, S, Si

73. Atoms of which group in the periodic table have a valence shell electron configuration of ns2np3?

74. Atoms of which group in the periodic table have a valence shell electron configuration of ns2?

75. Based on their positions in the periodic table, list the following atoms in order of increasing radius: Mg, Ca, Rb,
Cs.

76. Based on their positions in the periodic table, list the following atoms in order of increasing radius: Sr, Ca, Si,
Cl.

77. Based on their positions in the periodic table, list the following ions in order of increasing radius: K+, Ca2+,

Al3+, Si4+.

78. List the following ions in order of increasing radius: Li+, Mg2+, Br–, Te2–.
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79. Which atom and/or ion is (are) isoelectronic with Br+: Se2+, Se, As–, Kr, Ga3+, Cl–?

80. Which of the following atoms and ions is (are) isoelectronic with S2+: Si4+, Cl3+, Ar, As3+, Si, Al3+?

81. Compare both the numbers of protons and electrons present in each to rank the following ions in order of

increasing radius: As3–, Br–, K+, Mg2+.

82. Of the five elements Al, Cl, I, Na, Rb, which has the most exothermic reaction? (E represents an atom.) What
name is given to the energy for the reaction? Hint: note the process depicted does not correspond to electron affinity
E+(g) + e− ⟶ E(g)

83. Of the five elements Sn, Si, Sb, O, Te, which has the most endothermic reaction? (E represents an atom.) What
name is given to the energy for the reaction?
E(g) ⟶ E+(g) + e−

84. The ionic radii of the ions S2–, Cl–, and K+ are 184, 181, 138 pm respectively. Explain why these ions have
different sizes even though they contain the same number of electrons.

85. Which main group atom would be expected to have the lowest second ionization energy?

86. Explain why Al is a member of group 13 rather than group 3?
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